
  

  

Abstract—Human-robot collaboration (HRC) is an emerging 

form of work anticipated to improve construction processes by 

combining human expertise with robotic automation. 

Considering responses of human workers (i.e., co-workers) can 

be crucial to enhance their performance and productivity in 

human-robot teams. However, studies primarily focused on 

advancing robotic capabilities without considering their 

potential impacts on co-workers. This research proposes a 

human nervous system-based HRC in construction, which aims 

for robots to leverage the nervous system’s fundamental role in 

regulating human responses by: 1) understanding co-workers’ 

nervous system activities across the brain and body; and 2) 

adapting their actions to promote desired responses. To this end, 

wearable biosensors, such as an EEG (electroencephalogram) 

headset and an EDA (electrodermal activity) wristband, have 

been utilized to analyze co-workers’ responses. Additionally, a 

response-adaptive robot control strategy has been developed 

using a model-based reinforcement learning, which enables 

robots to consider each co-worker’s nervous system activity to 

foster desired responses. Major results from simulated HRC 

with participants and real KUKA robots in lab environments 

showed that all participants’ nervous system activities were 

significantly affected during HRC, which were also estimated to 

affect productivity in human-robot teams, presenting potential 

importance of considering co-workers’ responses. Moreover, the 

proposed nervous system-adaptive robot control strategy 

demonstrated promising potential in promoting desired nervous 

system activities in co-workers during simulated HRC in virtual 

environments. The findings of this research are expected to serve 

as a solid foundation to provide insights into achieving more 

productive and cohesive human-robot teams in construction, 

grounded on co-workers’ well-being. 

I. INTRODUCTION 

Human-robot collaboration (HRC) has emerged as a new 
form of work in construction, which can combine the strengths 
of humans and robots [1]. Robots can take over physically 
demanding, dangerous, and repetitive tasks to make room for 
human workers to focus on dexterous, problem-solving, and 
decision-making tasks. The integration of robotic automation 
and human expertise through HRC has already shown 
promising potential to alleviate the industry's ongoing 
challenges, including stagnant productivity, high safety risks, 
and labor shortage [2].  

While promising, HRC is still in its early stages of 
construction, requiring thorough analysis to realize its great 
potential. A potentially crucial aspect is collaborating with 
human workers' (co-workers') responses, encompassing 
physical, cognitive, and emotional. Previous studies have 
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demonstrated that physical, cognitive, and emotional states, 
such as physical fatigue, cognitive load, and emotions like 
happiness, can be crucial to worker performance [3]. 
Additionally, studies in some fields, like social robotics, have 
identified that human responses can influence trust and 
acceptance of robots, which can affect cohesion between 
humans and robots [4]. The importance of co-workers’ 
responses can be more pronounced within the co-robotic 
construction environments as a potentially crucial factor in 
realizing more productive and cohesive HRC.  

A comprehensive understanding of how co-workers would 
physically, cognitively, and emotionally respond to robots can 
be essential to identifying the importance of the responses. 
However, the primary efforts of HRC in construction have 
only prioritized advancing robotic capabilities, such as speed, 
precision, and autonomy, with little attention paid to how the 
robots can affect co-workers’ responses [5]. At the same time, 
promoting the desired responses in co-workers during HRC 
can become essential. A potential approach can involve robots 
recognizing and managing their impacts on co-workers' 
responses. However, robot control has primarily relied solely 
on performance-oriented factors, such as productivity and 
safety [5]. There remains a lack of effective methods for robots 
to consider both the performance-oriented factors and their 
co-workers’ responses during HRC. 

While co-workers’ responses can become crucial factors in 
realizing the great potential of HRC in construction, there 
remain notable gaps in: 1) our understanding of co-workers’ 
physical, cognitive, and emotional responses to robots; and 2) 
effective strategies for robots to consider the responses. 

II. RESEARCH OBJECTIVES 

To understand and promote desired responses in 
co-workers, this research proposes a human nervous 
system-based HRC consisting of two major phases: 1) 
understand human nervous system activity—an interconnected 
network throughout our body that fundamentally regulates 
human responses—during HRC to understand how humans 
will respond to robots; and 2) develop human nervous 
system-adaptive robot control strategy to promote desired 
human responses, which may lead to more productive HRC.  

III. HUMAN NERVOUS SYSTEM AND RESPONSES 

Human responses are fundamentally regulated by the 
nervous system [6]. By interpreting sensory inputs and 
coordinating appropriate changes across mind and body, the 
nervous system governs both involuntary (i.e., not willingly 
controllable) responses, such as increased heart rate, and 
voluntary (i.e., intentional) actions like conscious 
decision-making. These responses can manifest as short-term 
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fluctuations, like surprise or tension, or accumulate into 
long-term effects, such as fatigue, anxiety, and depression. 
Physical, cognitive, and emotional responses are shaped by 
two major divisions of the nervous system (Figure 1): 1) the 
peripheral nervous system, which governs physical reactions, 
and 2) the central nervous system, comprising the brain and 
spinal cord, which underlies cognitive and emotional 
processes.  

 

Figure 1. Human Nervous System. 

Within the peripheral nervous system, the autonomic 
nervous system regulates involuntary physiological processes, 
such as heart rate, blood pressure, and respiration [7]. Its 
sympathetic nervous system is responsible for the body's 
fight-or-flight response, which refers to physiological 
activations like increased heart rate and skin conductance in 
response to stressful events [7]. The activation of the 
sympathetic nervous system (i.e., sympathetic arousal) can be 
influential to human performance by affecting muscle 
activation, movement speed, and strength [8].  

Cognitive responses are primarily mediated by the central 
nervous system, which is related to mental functions, such as 
attention, perception, and memory [9]. Among these constructs, 
task engagement and vigilance can be critical to human 
performance, which can lead to different cognitive states, 
ranging from mind wandering to optimal for task conductance 
[9]. Task engagement reflects the demands on sensory 
processing during task conductance, and vigilance refers to 
alertness to external contingencies.  

Emotional responses are also mediated by the central 
nervous system and can be represented by two constructs, 
valence and cortical arousal [10]. Valence refers to feelings 
from displeasure to pleasure, while cortical arousal reflects 
feelings from relaxation to excitement. Together, valence and 
cortical arousal are widely recognized as reliable and sufficient 
dimensions for representing emotional states, such as 
excitement, relaxation, boredom, and fear [10]. Changes in 
valence and arousal can influence how people appraise the 
causes of these changes. If a robot is perceived as the cause, 
their appraisal of robots can be changed, which can affect 
acceptance and trust toward robots [4]. 

IV. RESEARCH PHASE #1 

In phase #1, we examine co-workers’ physical, cognitive, 
and emotional changes over short periods like seconds and 
minutes while collaborating with a robot. To this end, we 
recruited 40 participants to experience different collaborating 
conditions, such as the robot’s different movement speeds, in a 
lab environment (Figure 2). The corresponding responses were 
analyzed by measuring the changes in the five 

constructs—sympathetic arousal, task engagement, vigilance, 
valence, and cortical arousal—using an EDA wristband sensor 
and an EEG headset.  

 

Figure 2. Overview of the method of Phase #1. 

A. Bricklaying and Line-drawing Tasks with Participants 

We recruited 40 students with diverse backgrounds, levels 
of construction experience, and familiarity with robots. 
Although these participants may not adequately represent a 
specific population, such as construction workers, their varied 
backgrounds were expected to exemplify different human 
responses during HRC, which are similarly anticipated from 
construction workers.  

Among them, 20 participants completed a simulated 
bricklaying task with a KUKA KR 120 robot (Figure 3a). This 
demonstrates a significant task distribution between humans 
and robots, where robots assumed a physically demanding role, 
such as delivering bricks, while humans took on the dexterous 
role of laying the bricks in a line [11]. The bricklaying task was 
conducted in a lab at the University of Michigan. During the 
task, participants experienced varied conditions of the five 
parameters—robot’s movement speed, arm swing speed, 
proximity, level of autonomy, and leader of 
collaboration—across different conditions, which were 
identified due to their potential different impacts on human 
responses from previous studies [12].  

 

Figure 3. Bricklaying and line-drawing tasks.  

The remaining 20 participants performed a simulated 
line-drawing task with a KUKA KR 60 robot (Figure 3b). This 
represents another major task distribution between humans and 
robots; robots conduct repetitive line-drawing when humans 
direct the path for the lines and supervise the quality [11]. The 
line-drawing task was conducted in a lab at Seoul National 
University in Korea. During the task, participants experienced 
varied conditions of the four parameters—task pace, error rate, 
leader of collaboration, and communication modality—across 
different conditions, which were identified due to their 



  

potential different impacts on human responses based on 
previous studies.  

B. Response Monitoring using Wearable Sensors 

During the bricklaying and line-drawing tasks, the EDA 
signal was analyzed to measure the levels of sympathetic 
arousal, reflecting physical responses. To this end, the EDA 
signal was processed using convex optimization to extract 
electrodermal response (EDR), reflecting the level of 
sympathetic arousal. Meanwhile, the EEG signal was analyzed 
to measure the levels of task engagement and vigilance for 
cognitive responses, and those of valence and cortical arousal 
for emotional responses. To this end, EEG signals were 
collected over the scalp, which are known to be responsive to 
cognitive and emotional responses. Noise reduction techniques, 
such as wavelet independent component analysis, were applied 
to alleviate artifacts. Then, EEG signals were analyzed across 
different frequency ranges that are known to be correlated with 
the four constructs of the cognitive and emotional responses.   

C. Analysis, Results, and Discussion 

Multiple linear regression was applied (1), which allows us 
to examine the relationships between independent and 
dependent variables in an easily interpretable and statistically 
reliable model . We considered the five constructs of physical, 
cognitive, and emotional responses as dependent variables and 
the parameters of HRC as independent variables.  

Y = f(X) + g(X, time)                          (1) 

where X is the parameters of HRC and Y is human responses 

F-tests of overall significance reveal that all participants’ 
responses were significantly affected during HRC. 
Additionally, t-tests on the regression coefficients reveal that 
all participants’ responses significantly varied over time. 
Moreover, the nested regression analysis reveals that responses 
of almost every pair of participants (97%) were different.  

Meanwhile, we also estimated the productivity in 
human-robot teams in terms of the parameters of HRC. As the 
estimations of co-workers’ responses using regression models 
and the team productivity have an identical basis, this allowed 
us to explore the concurrent changes in co-workers’ responses 
and team productivity given the conditions of the parameters. 
Based on this setup, we tried to answer the two questions: 1) if 
HRC prioritizes productivity, how does it affect co-workers’ 
responses?; and 2) if HRC prioritizes co-workers’ responses, 
how does it affect team productivity? To answer these 
questions, we quantitatively defined optimal physical, 
cognitive, and emotional responses that can lead to optimal 
human performance. Based on previous studies, humans are 
known to optimally perform when they exhibit: 1) moderate 
sympathetic arousal; 2) moderate task engagement; 3) 
moderate vigilance; 4) positive valence; and 5) positive 
cortical arousal [9,10,13].   

Results demonstrated that although human-robot teams 
could achieve high productivity when HRC prioritized 
productivity, none of the co-workers were estimated to exhibit 
the optimal responses (TABLE 1). In contrast, when HRC 
prioritized co-workers’ responses, all co-workers were 
expected to exhibit the optimal responses. However, 
considering responses could cause a significant loss in 

productivity. As a workspace, HRC may prioritize 
productivity. However, when co-workers struggle, if robots 
can adapt to co-workers’ responses and foster desired 
responses, it can be an effective way to balance productivity 
and co-workers’ responses. These results present the potential 
of robot adaptation to co-workers’ responses as a way to 
balance co-workers’ responses and team productivity. 

TABLE 1. Productivity and co-workers’ responses. 

Priorities Tasks 
# of Optimal 
Responses 

Estimated Team 
Productivity 

Productivity 
Brick 0 314 bricks/team-hr 

Line 0 2.71 m/team-min 

Responses 
Brick 20 240 bricks/team-hr 

Line 20 2.31m/team-hr 

  

V. RESEARCH PHASE #2 

Given the potential of robot adaptation to co-workers’ 
responses, this research develops a response-adaptive robot 
control strategy, which aims for robots to consider and foster 
desired responses in co-workers. We applied a model-based 
reinforcement learning (RL) [14], a classical branch of 
machine learning for adaptive robot control.  

A. Model-based Reinforcement Learning 

While RL holds great potential for adaptive robot control, 
applying RL to adapt to human responses is not 
straightforward. The complicated nature of human responses, 
such as changing over time and varying among individuals, 
can challenge RL training by causing 1) Markov assumption 
violation, 2) non-stationary environment, and 3) 
hard-to-generalize policy. To overcome such challenges, this 
research integrates our prior findings with a model-based RL. 
In our prior study, we demonstrated that multiple linear 
regression modeling could reliably represent each co-worker’s 
responses. Providing these models enables robots to learn 
regression coefficients tailored to each co-worker, instead of 
exploring their responses from scratch, which can facilitate 
stable and reliable adaptation.  

The proposed robot control strategy lets a robot operate 
iteratively by 1) taking an action, 2) learning the co-worker’s 
physical, cognitive, and emotional responses, and 3) planning 
the next action to promote the desired co-worker’s responses 
(Figure 4). Notably, the robot is assumed to monitor 
co-workers’ responses through wearable sensors, such as a 
wristband EDA sensor for physical response and an EEG 
headset for cognitive and emotional responses. 

 

Figure 4. Overview of the proposed robot control strategy. 



  

B. Bricklaying and Line-drawing in Virtual Environments 

As an early attempt to validate the effectiveness of the 
proposed robot control strategy in adapting to co-workers’ 
responses, we simulated HRC with virtually simulated 
co-workers’ responses in virtual environments for bricklaying 
and line-drawing tasks. We created virtual environments that 
replicate the lab environments, where the bricklaying and 
line-drawing tasks were conducted in Phase #1. In the virtual 
environments, a virtual robot collaborated with 40 virtual 
co-workers, 20 for the bricklaying task and 20 for the 
line-drawing task. The responses of virtual co-workers were 
simulated by using their regression models obtained from 
Phase #1, which allowed for the estimation of physical, 
cognitive, and emotional responses to the robot’s actions. By 
interacting with these virtual co-workers, the robot could learn 
their responses over interactions through the proposed 
response-adaptive robot control strategy.  

C. Results and Discussion 

In order to quantitatively evaluate the effectiveness of the 
proposed robot control strategy in considering co-workers’ 
responses, we defined a metric, response score (2), which is the 
number of constructs that are at optimal states out of five. If the 
response score is 5, it means that co-workers’ physical, 
cognitive, and emotional responses are optimal. 

Response Score (0 to 5) = # of Optimal Constructs    (2) 

The proposed strategy effectively improved co-workers’ 
responses, achieving a response score greater than 4 out of 5 
for both bricklaying and line-drawing tasks (TABLE 2). 
Notably, when the robot prioritized productivity, the response 
score was only around 2. Our results present the proposed 
personalized response-adaptive robot control strategy as an 
effective strategy to promote desired co-workers’ responses. 

TABLE 2. Comparison of robot control strategies. 

Strategies Tasks 
Response 

Score 
Estimated Team 

Productivity 

Productivity 
Prioritized 

Brick 2.12 314 bricks/team-hr 

Line 2.44 2.71 m/team-min 

Response 
Adaptive 

Brick 4.32 236 bricks/team-hr 

Line 4.27 2.34 m/team-hr 

 

This study proposes a response-adaptive robot control 
strategy using a model-based RL, which enables robots to 
learn each co-worker’s physical, cognitive, and emotional 
responses to foster their desired status during HRC. While 
co-workers’ responses can vary during HRC, the simulated 
HRC in virtual environments for bricklaying and line-drawing 
tasks demonstrated the potential effectiveness of the proposed 
robot control strategy in fostering desired responses in 
co-workers from the two major forms of HRC.  

 The proposed model-based RL approach allows reliable 
and scalable adaptation to co-workers’ responses, even when 
interacting for the first time. Additionally, by modeling and 
storing each co-worker's responses, the approach can facilitate 
future interactions, having already learned their responses. As 
the robot does not need to start from scratch, subsequent 
collaborations can become more quickly adaptive to each 
co-worker's responses.  

VI. CONCLUSION 

While the primary focus of HRC has been on advancing 

robotic capabilities, this research demonstrated the 

importance of co-workers’ physical, cognitive, and emotional 

responses as potentially crucial aspects that can influence 

co-workers’ performance, productivity, and cohesion in 

human-robot teams. To consider responses, this research also 

proposes a response-adaptive robot control strategy, which is 

expected to contribute to fostering desired responses in 

co-workers. Findings of this research are expected to lay a 

solid foundation to provide insights into more productive and 

cohesive human-robot teams in construction, grounded on 

co-workers’ physical, cognitive, and emotional well-being. 
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