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Abstract— Robust navigation in 3D construction environ-
ments requires an embodied agent to perceive and reason across
diverse spatial and dynamic cues. In this paper, we present
a multisensory navigation framework for simulated construc-
tion sites using an object-centric embodied agent equipped
with LiDAR, depth, IMU, and proximity sensors. Built in
NVIDIA Isaac Sim, our system fuses geometric and inertial
information to interpret high-level instructions and execute
efficient, collision-free trajectories. We encode construction
environments using abstracted object-level scene representa-
tions and leverage an instruction-tuned language model to
iteratively generate action sequences. Experimental evaluations
demonstrate that our agent significantly outperforms visual-
only and traditional LiDAR-based navigation baselines in goal
success rate, path efficiency, collision avoidance, and trajectory
smoothness. Through ablation studies, we validate the comple-
mentary roles of each sensor modality in supporting long-range
planning, local maneuvering, and safe obstacle avoidance. This
work highlights the importance of multisensor integration for
enabling intelligent, context-aware navigation in safety-critical
construction scenarios.

I. INTRODUCTION

Embodied AI represents an emerging field that focuses on
creating intelligent agents capable of perceiving, navigating,
and operating within three-dimensional environments [1]. At
the core of embodied AI research is the development of
navigation capabilities, where agents learn to perform tasks
in simulated environments using raw pixel data as input [2].
These tasks span a spectrum of complexity, from target-
driven navigation, where agents must find specific locations
[3], to instruction-based visual navigation, where agents
follow natural language directions [4], and even embodied
question answering (EQA), where agents must explore an
environment to find information needed to answer questions
[5].

Construction sites present unique challenges for naviga-
tion due to their unstructured and dynamic nature. Objects
ranging from tall structures (ladders, columns) to low-lying
items (tools, material piles) are distributed unpredictably,
creating a much more complex environment than structured
spaces like warehouses or factories [6]. To address these
challenges, researchers have employed LiDAR Odometry
and Mapping (LOAM) methods to generate comprehensive
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3D point clouds of construction sites, which can then be
projected into 2D grid maps for efficient navigation [6],
[7]. Although. multisensory perception represents a critical
advancement in embodied AI navigation, as it allows agents
to develop richer representations of their 3D environments
beyond what can be achieved with visual data alone. De-
spite its importance, multisensory 3D scene representation
learning has historically received less attention compared to
unimodal approaches [8].

Recent research has explored even more innovative sen-
sory combinations, such as using echoes with RGB imagery
to estimate wide field-of-view depth information for 3D
navigation. The PointGoal echo navigation approach directly
leverages echo data to perceive spatial cues, using an echo
encoder that maps binaural echoes into vector representations
which are then processed alongside GPS signals to determine
agent actions [9]. For construction site navigation specifi-
cally, multimodal systems often integrate camera imagery
with LiDAR sensing. This combination provides comple-
mentary information where the camera captures visual data
as pixel images while strategically placed LiDAR sensors
provide precise depth measurements, enabling agents to
perceive their environment in three dimensions [10]. How-
ever, most existing embodied navigation frameworks either
rely solely on visual inputs or lack integration of diverse
spatial sensors suited for complex, dynamic environments
like construction sites. There remains a critical need for
instruction-driven agents that can fuse mid- and long-range
sensing modalities to reason about structure, avoid obstacles,
and adaptively plan in unstructured 3D spaces [11], [3].

The key contributions of this research include:
• We propose an object-centric embodied navigation sys-

tem that integrates LiDAR, depth, IMU, and proximity
sensors to enable efficient and safe instruction-driven
navigation in cluttered 3D construction environments
using Isaac Sim.

• We develop a closed-loop control pipeline where a LLM
interprets high-level tasks and sequentially generates
navigation actions by reasoning over fused multisensory
representations and dynamic observations.

• We conduct comprehensive experiments showing signif-
icant improvements in goal success rate, path efficiency,
and collision avoidance over strong baselines.

II. METHODOLOGY

In this section, we illustrate our framework for multi-
sensory navigation within 3D simulated construction en-
vironments, which leverages an object-centric embodied



agent architecture. Our method integrates visual, LiDAR,
IMU, and Proximity sensors into a coherent decision-making
pipeline, guided by an instruction-tuned Large Language
Model (LLM). The framework enables an agent to perceive,
explore, and reason about complex scenes in a goal-driven
manner. The method consists of four primary components:
(1) scene encoding using object-centric representations, (2)
multimodal action design, (3) multisensory feedback inte-
gration, and (4) LLM-based policy generation for embodied
interaction.

A. Object-Centric Scene Representation

In our simulated 3D construction environment, we begin
by abstracting the scene into a structured set of object-centric
representations. The agent initially performs a panoramic
visual sweep, capturing RGB-D frames from multiple view-
points. From these views, object proposals are extracted
and encoded using a pretrained CLIP-based vision encoder.
Object-level features are then fused across views using multi-
view association, and spatial localization is achieved through
positional embeddings. Each object is annotated with its
semantic label, 3D bounding box, estimated material type,
and contextual metadata (e.g., “scaffold joint”, “metal pipe”,
“heated surface”), forming a compact scene graph.

In parallel, environmental proximity cues are collected
via simulated microphones and processed with a CLAP-
based proximity encoder. These features are associated with
emitting objects and appended to the scene graph. The result
is a multimodal, object-centric embedding of the construction
site that preserves both global structure and local detail
relevant to navigation and safety inspection.

B. Embodied Interaction via Action Tokens

To facilitate active exploration, we define a set of discrete
action tokens that parameterize the agent’s interactions with
the environment. These include:

• <SELECT>: Choose a target object based on linguistic
and sensory context.

• <NAVIGATE>: Move towards the selected object using
a geometric path planner.

• <OBSERVE>: Capture close-range RGB-D data and
update the object’s visual representation.

• <LiDAR>: Simulate 3D environment for collecting
surface deformation and object data.

• <Proximity>: Apply a distance force to generate
impact distance used for safety inference.

• <IMU>: capture motion of robots for rearrangement or
functional interaction.

• <LOOK-AROUND>: Acquire contextual information
about nearby objects in the scene.

These tokens enable compositional behaviors that mimic
real-world inspection procedures, such as identifying loose
fittings, detecting overheated machinery, or distinguishing
material types under visual ambiguity.

C. Multisensory State Feedback Encoding

Following each interaction, the sensory outcomes are
encoded and appended to the agent’s perceptual state via
specialized state tokens. IMU data are simulated using
a differentiable motion robot and transformed into 2D
heatmaps. These are projected into the LLM’s embedding
space via a dedicated IMU adapter trained for modality
alignment. Similarly, distance readings are visualized as
heatmap dsitance patterns and processed using a distance
adapter. Impact distance captured by the <Proximity>
token is encoded using a CLAP. Each of these encoded
modalities is structured into tokenized feedback blocks (e.g.,
<LiDAR>...</LiDAR>, <IMU>...</IMU>) and fed into the
LLM, enabling it to reason over time-varying, multimodal
sensor states.

D. LLM-Based Instruction and Policy Generation

At the heart of the framework lies a multimodal
instruction-tuned LLM, adapted from the LLaVA architec-
ture. The model is trained to generate context-aware action
tokens conditioned on the current task prompt and the
evolving multisensory state. During training, the LLM is
optimized using a hybrid loss: (1) standard autoregressive
cross-entropy loss for action and language token prediction,
and (2) a contrastive attention-based loss to ensure correct
object selection during <SELECT> actions.

Our LLM is tuned on our simulated dataset of
construction-specific multisensory interactions generated in
simulation. Each datapoint includes a prompt (e.g., “Find
the red pipe near the scaffolding”), scene representation, a
sequence of actions and states, and reasoning explanations.
The LLM is trained in a recurrent fashion, where each
newly acquired sensory token informs the next step of policy
generation.

During inference, the agent executes in a closed-loop
manner. Upon receiving a prompt and scene input, the LLM
generates an initial action. The agent then performs the action
in the 3D simulator, retrieves the resulting sensory data, and
updates the input state. This iterative process continues until
a task-specific completion signal is detected (e.g., successful
object retrieval or hazard localization).

E. Simulation Platform and Integration

Our framework is deployed in a high-fidelity construc-
tion simulation environment built on top of Isaac Sim
and extended with construction-relevant assets. Interactive
objects are augmented with physically realistic materials,
distance profiles, and IMU properties. The embodied agent
is equipped with simulated RGB-D sensors, LiDAR, and
IMU, enabling rich, physics-based interaction with the envi-
ronment. Overall, the proposed methodology bridges object-
level abstraction, rich sensory feedback, and large-scale
language-based reasoning to enable intelligent navigation
and inspection within simulated construction sites.



Fig. 1. An overview of the proposed method. The scene is initially represented in a graph concept, object-focused format, with detailed multisensory
object properties only becoming accessible when the agent actively engages with them through interactions. We’ve created a collection of action tokens
that represent the different ways agents can interact with the environment. When interactions occur, their outcomes are communicated back to the Large
Language Model (LLM) through state tokens.

F. Dataset

To facilitate the development and evaluation of our vision-
language navigation agent, we created a realistic simulated
construction site environment using NVIDIA Isaac Sim [12].
Our simulated environment, which we call SynthConstruct,
comprises 15 master construction sites, each representing
a unique phase of construction with varying structural el-
ements. The sites vary in size from 500 to 2,300 square
meters, totaling a traversable space of over 120 Km² for
robotic navigation within the simulator. SynthConstruct in-
cludes a vast array of construction-related objects to ensure
a comprehensive representation of real-world construction
elements.

III. RESULTS AND DISCUSSION

We evaluate our proposed multisensory navigation frame-
work in 3D simulated construction environments using the
NVIDIA Isaac Sim platform. The agent is equipped with
LiDAR, depth sensing, IMU, and proximity sensors, and
operates under diverse conditions involving clutter, occlu-
sions, and partial observability. Our experiments focus on
assessing the agent’s ability to interpret navigation goals
from high-level instructions and execute safe, efficient paths
in complex, object-dense spaces. The evaluation benchmarks
four key metrics: (1) Goal Success Rate (GSR), (2) Path
Efficiency (PE), (3) Collision Rate (CR), and (4) Trajectory
Smoothness (TS).

A. Quantitative Evaluation

Table I summarizes the performance of our agent com-
pared to baseline navigation strategies, including a visual-
only agent (VO), a classical LiDAR-based path planner
(CLP), and our ablated model without IMU-proximity in-
tegration (Ours–IMU+Prox).

TABLE I
NAVIGATION PERFORMANCE COMPARISON ACROSS 100 EPISODES IN

DIVERSE CONSTRUCTION SCENES.

Model GSR (%) PE (%) ↑ CR (%) ↓ TS (m/s2) ↓
VO (RGB-D Only) 61.3 71.4 18.7 0.93
CLP (LiDAR Planner) 69.8 76.2 12.3 0.88
Ours–IMU+Prox (Ablated) 74.5 82.6 10.5 0.79
Ours (Full) 85.7 90.1 6.2 0.65

Our full model achieves a Goal Success Rate (GSR) of
85.7%, a significant improvement over traditional LiDAR-
only and RGB-D models. The Path Efficiency (PE), com-
puted as the ratio of optimal to actual path length, indicates
that our model generates near-optimal paths while reduc-
ing redundant or oscillatory motion. Notably, the Collision
Rate (CR) is reduced by over 50% compared to the RGB-
D baseline, attributed to the use of short-range proximity
data for reactive obstacle avoidance and the IMU data for
dynamic stability during movement. Trajectory Smoothness
(TS), calculated as the average linear acceleration along the
path, reflects the agent’s ability to maintain stable motion
through uneven or cluttered spaces.

B. Ablation Study

To assess the individual contribution of each sensing
modality, we conducted ablation experiments where one
sensor was removed at a time. Table II summarizes the
impact of each removal on key navigation metrics.

TABLE II
ABLATION STUDY: EFFECT OF SENSOR MODALITIES ON NAVIGATION

METRICS.

Configuration GSR (%) PE (%) CR (%) TS (m/s2)
Full (LiDAR + Depth + IMU + Prox) 85.7 90.1 6.2 0.65
w/o Proximity 78.6 84.9 11.8 0.79
w/o IMU 80.2 86.1 9.5 0.91
w/o LiDAR 68.9 74.3 13.7 0.94

Removing LiDAR resulted in the most significant degra-



dation in both path efficiency and goal success rate. This is
expected, as LiDAR provides long-range geometric aware-
ness of the 3D structure of the environment, enabling reliable
global path planning and spatial localization. In construction
sites, where large structural elements such as scaffolds,
columns, and equipment can occlude vision, LiDAR ensures
the agent can navigate around large-scale obstructions and
maintain situational awareness.

While not individually ablated in this table due to fusion
with LiDAR in our base setup, depth data complements
LiDAR by capturing dense near-field spatial information with
rich resolution. It is especially useful for detecting floor-
level hazards (e.g., cables, tools) and navigating through tight
spaces or thresholds. Removing the IMU increased trajectory
instability, as reflected by the increase in average acceleration
(TS) and reduced success rate. IMU data allows the agent
to infer its motion state (velocity and orientation) in real-
time, which is crucial for maintaining balance and executing
smooth navigation—especially on uneven terrain, ramps, or
during sudden changes in direction, all of which are common
in dynamic construction environments.

The absence of the proximity sensor caused a notable rise
in collision rate. Proximity sensing acts as a safety buffer,
enabling reactive avoidance of objects that are too close to
the agent—such as workers, hanging cables, or handheld
tools—where LiDAR’s resolution or depth perception may
be insufficient due to occlusion or sensor blind spots. Its
inclusion is critical for ensuring the agent can operate safely
in dense or human-populated areas. Overall, each sensor
modality supports a unique and complementary function in
enhancing navigation robustness. The ablation study vali-
dates that construction sites demand a fusion of long-range
structural awareness, local obstacle detection, motion state
estimation, and close-range safety assurance for effective and
safe autonomous navigation.

C. Limitations and Future Work

While our framework performs robustly in simulated set-
tings, deployment to real construction robots would require
calibration of sensor fusion models under real-world noise
and drift. Additionally, current policies are pre-trained and
do not adapt online; incorporating reinforcement learning or
model-predictive control (MPC) would improve adaptabil-
ity in highly dynamic or partially mapped environments.
Finally, introducing memory-based models could enhance
long-horizon task planning across multiple goals. Also, the
results demonstrate the advantages of combining LiDAR,
depth, IMU, and proximity sensing in a structured, object-
aware policy framework. Our approach enables robust, safe,
and efficient navigation across cluttered, unstructured con-
struction environments, offering a practical path toward de-
ployable autonomous site robots.

IV. CONCLUSION

We presented a multisensory object-centric framework for
autonomous navigation in simulated 3D construction sites.
Leveraging LiDAR, depth, IMU, and proximity sensors,

our embodied agent operates under the supervision of an
instruction-tuned language model that interprets spatial se-
mantics and generates action plans. The fusion of long-range
and short-range sensing enables the agent to navigate safely
and efficiently in cluttered, partially observable environments
common in real-world construction. Our evaluations in Isaac
Sim show that the proposed method achieves higher goal
success rates, better path efficiency, and significantly reduced
collisions compared to RGB-D and classical LiDAR-based
baselines. Future work will focus on transferring the frame-
work to real hardware, incorporating online learning and
memory for persistent multi-goal planning, and integrating
with dynamic scene understanding for operation in changing
construction environments.
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