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Abstract— Robust localization in degenerate environments
such as construction sites remains challenging due to frequent
visual degradation and intermittent range sensing. To address
this challenge, we propose a visual Simultaneous Localization
and Mapping (SLAM) framework that tightly integrates visual-
inertial odometry (VIO), visual loop closure, and Ultra-Wideband
(UWB) range measurements through a factor graph optimiza-
tion. The proposed system introduces an interpolated range
factor, fully utilizing sparse and asynchronous UWB data by
leveraging continuous-time pose interpolation. We evaluate the
method on the public dataset under simulated degenerate sce-
narios, including visual degradation and partial UWB signal
loss. Experimental results demonstrate that the proposed method
significantly reduces drift and maintains accurate global local-
ization, even under severe sensor degradation. Project page:
https://sparolab.github.io/research/icra 2025/vir-construction.

I. INTRODUCTION

Autonomous navigation in construction environments re-
mains challenging due to frequent occlusions, dynamic obsta-
cles, and visual degradation. Although camera-based SLAM is
widely adopted for its cost-effectiveness and perceptual rich-
ness, it is highly susceptible to drift and failure in environments
with sparse or unstable visual features.

To enhance robustness, VIO has been widely adopted as it
fuses visual and inertial data to provide more reliable local
motion estimation than visual-only systems [1]. While VIO
improves short-term accuracy and stability, it still lacks the
measurements required for global accuracy, eventually leading
to incremental drift. Visual loop closures are often introduced
to address this limitation by recognizing revisited locations and
enforcing global consistency. However, loop closures heavily
rely on the re-observation of scenes, which is vulnerable to
limited revisits, viewpoint changes, or dynamic occlusions.

As an alternative to Global Navigation Satellite Systems
(GNSS), UWB sensors have emerged in GNSS-denied environ-
ments such as indoor or urban canyons. Consequently, integrat-
ing VIO with UWB is a natural approach to alleviate drift errors.
Early approaches adopted loosely coupled strategies, fusing
UWB-based positions with VIO poses [2]. Although these
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Fig. 1. Illustration of a degenerate construction environment where both
visual degradation and UWB signal blockage can occur.

methods are simple and modular, they typically require four-
range measurements of minimum to obtain 3d position, making
them vulnerable in such environments. Thus, recent studies have
focused on tightly coupled frameworks that directly fuse raw
range data with other modalities within a unified optimization,
showing improved accuracy and robustness [3], [4], [5].

We present a robust visual SLAM system that integrates
VIO with UWB range measurements through an interpolated
range factor within a factor graph optimization framework. The
proposed system is capable of operating reliably even in such
challenging environments as illustrated in Fig. 1. Visual noise
is prevalent, and stable UWB signal reception cannot always be
guaranteed in these environments [6]. The main contributions
of this work are summarized as follows:

• A factor graph-based SLAM framework that tightly
integrates VIO poses, visual loop closures, and UWB
range measurements.

• Interpolated range factor enables fully utilizing asyn-
chronous and sparse UWB data through continuous-time
pose interpolation.

• Evaluation on simulated degenerate environments us-
ing public dataset [7] shows that the proposed method
suppresses large VIO drift and maintains robust localiza-
tion under degenerate conditions.

II. METHOD

A. System Overview

As shown in Fig. 2, we fuse camera and IMU measurements
to estimate robot poses using the VINS-Fusion framework [8].
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Fig. 2. Overview of the proposed SLAM pipeline.

For loop closure, we perform place recognition based on bag-of-
words (BoW) scheme and estimate the relative pose with feature
correspondences. In addition, we propose interpolated range
factors to tightly integrate UWB measurements into the factor
graph. This approach enables full exploitation and effective
fusion of asynchronous range data.

B. Visual-Inertial Odometry

We adopt VINS-Fusion [8] to estimate sequential robot poses
by fusing visual-inertial data. While visual odometry (VO) can
also be used for this purpose, we base our system on VIO to
ensure robustness in degenerate environments where visual
degradation is common. The resulting relative motion estimates
are incorporated into the factor graph as motion factors. The
sequential VIO residual is defined as:

rVIO
k = f(xk,xk+1)⊟ ẑk,k+1

= log
(
ẑ−1
k,k+1 · f(xk,xk+1)

) (1)

where xk = [pk,Rk] is the robot’s pose at camera frame k,
and pk ∈ R3,Rk ∈ SO(3) are the position and orientation of
robot. f( · ) denotes the relative pose function computed from
current state variables, ẑk,k+1 is the estimated relative pose
between frames k and k + 1, and the operator ⊟ denotes pose
difference in the tangent space of the Lie group.

C. Visual Loop Constraint

We adopt a BoW-based scheme from VINS-Mono [1]. Loop
candidates are initially retrieved using DBoW2 [9]. Descriptor-
based feature correspondences are then established, followed
by geometric verification and relative pose estimation using 2D-
2D fundamental matrix random sample consensus (RANSAC)
and 2D-3D Perspective-n-Point (PnP) RANSAC.

The estimated relative transformation between frame i and
loop candidate j is denoted as ẑLC

i,j , and is incorporated into the
factor graph through the visual loop residual defined as:

rLC
(i,j) = f(xi,xj)⊟ ẑLC

i,j (2)

D. Interpolated Range Constraint

We introduce an UWB range constraint to address the drift
errors and limitations of visual loop closure. UWB range
measurements are generally accurate under Line-of-Sight (LoS)
conditions, but may be significantly biased under Non-Line-
of-Sight (NLoS) due to multipath propagation and signal at-
tenuation [6]. We assume that the measurements are acquired
under LoS conditions, and apply robust kernels to mitigate the

Fig. 3. Comparison of range factor application with (up) and without
(down) pose interpolation. Continuous time pose interpolation (purple curve)
increases the chance of asynchronous UWB range measurement (blue dash)
utilization. In addition, increased UWB range measurement and visual loop
closure (turquoise dash) leads to increased accuracy. Each UWB stations
relative location are also given as a between factor (yellow dash).

impact of occasional NLoS-induced noise. However, modeling
or detecting NLoS conditions explicitly remains out of scope
in this work and is left as future work.

At time t, the measured distance from ith anchor to the robot’s
antenna is modeled as:

dt =
∥∥pt +Rto− ai

∥∥
2
+ bi + ϵ (3)

where pt and Rt are the robot’s position and orientation at time
t, respectively, o denotes the antenna’s position in the robot’s
body frame, ai and bi are the position and bias of the ith anchor,
and ϵ ∼ N (0, σ2) represents Gaussian noise.

As illustrated in Fig. 3, we interpolate the robot pose at the
time of each range measurement to compensate the temporal
discrepancy between UWB and VIO. This enables the system to
fully utilize asynchronous UWB measurements by associating
them with continuous-time poses. To achieve this, the robot
pose is interpolated between adjacent states xk−1 and xk as:

pt = (1− s)pk−1 + spk

Rt = Rk−1 exp
(
s log

(
R⊤

k−1Rk

)) (4)

where xt = [pt,Rt] is the robot’s pose at time t, and s =
(t− tk−1)/(tk − tk−1), with tk−1 < t ≤ tk.

Thus, the interpolated range residual is defined as:

rUWB
(t,k,i) =

∥∥pt +Rto− ai
∥∥
2
+ bi − dt (5)

E. Factor Graph Optimization

The sequential VIO poses, visual loop constraints,
and interpolated range constraints in the factor graph
are optimized using iSAM2 [10]. For all variables
X = {x0, . . . ,xk,a

0, . . . ,ai, b0, . . . , bi} including robot
poses, anchor positions, and anchor biases, we define the cost
function of our system as:

X̂ = argmin
X

{F(X )} (6)



TABLE I
ABSOLUTE TRAJECTORY ERROR (ATE) (M) COMPARISON OF SLAM PIPELINES ON NTU VIRAL [7] DATASET.

Sequence VINS-Mono VINS-Fusion VINS-Fusion
+ LC VIR-SLAM Chao Hu el al. DC-VIRO Ours

(w/o LC) Ours

eee 01 1.305 0.558 0.437 1.298 0.781 0.524 0.321 0.322
eee 02 0.854 0.640 0.331 0.443 0.678 0.382 0.322 0.320
eee 03 1.065 0.482 0.421 0.657 0.315 0.331 0.305 0.304
nya 01 0.915 0.510 0.492 0.869 0.604 0.412 0.305 0.302
nya 02 0.554 0.463 0.386 0.520 0.212 0.217 0.260 0.253
nya 03 1.445 0.841 0.664 0.761 0.513 0.263 0.253 0.248

Average 1.023 0.582 0.455 0.758 0.517 0.355 0.294 0.292

To be specific, we incorporate the residual functions into the
factor graph F(X ):

F(X ) =
∑
k

∥∥rVIO
k

∥∥2
Σk

+
∑

(i,j)∈L

ρLC
(∥∥∥rLC

(i,j)

∥∥∥2
Σi,j

)

+
∑

(t,k,i)∈U

ρUWB
(∥∥∥rUWB

(t,k,i)

∥∥∥2
Σt,k,i

) (7)

whereρLC( · ) andρUWB( · ) are robust loss functions for visual
loop constraints and interpolated range constraints, respectively.
L and U denote the sets of loop closures and UWB constraints.

In our implementation, we do not estimate the robot’s po-
sition based on fixed global anchor locations. Instead, we
incorporate the known relative positions between UWB anchors
as additional constraints in the factor graph, while treating their
absolute positions as optimization variables. These inter-anchor
constraints regularize the optimization and preserve spatial
consistency among anchors during joint estimation.

III. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we
conducted experiments using the NTU VIRAL dataset [7],
which was collected in outdoor urban canyons and indoor
environments. This dataset includes a wide range of sensor
modalities such as LiDAR, stereo cameras, IMU, and UWB-
based range data acquired from 3 anchors and 4 antennas.

A. Evaluation in Standard Conditions
We evaluated our method on two representative sequences

from the dataset: EEE (urban canyon) and NYA (indoor). To
benchmark performance, we compared our approach against
the following baselines: VINS-Mono [1], VINS-Fusion (stereo
VIO) [8], VINS-Fusion + LC (with loop closure), VIR-
SLAM [3], Hu et al. [4], DC-VIRO [5], our method without
loop closure (VIO + UWB), and our full method (VIO + LC +
UWB). For evaluation, we computed the Absolute Trajectory
Error (ATE) using the evo toolkit [11].

Table I presents the ATE results across all sequences. The
proposed method achieves the lowest average ATE of 0.292
m, demonstrating robust localization across both indoor and
outdoor environments. Notably, our system maintains relatively
uniform performance, suggesting consistent behavior under
varying conditions. To assess the contribution of each sensing
modality, we compare the loop-closure-only approach (VINS-
Fusion + LC) against the UWB-only method (ours w/o LC).
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Fig. 4. Simulated UWB signal dropout for degenerate environment evaluation.
(up) Example of range measurements from anchor 101 in eee 02 sequence.
(down) Summary of blocking statistics, including anchor-specific blocking
duration and total message loss rate across sequences.

Loop closure effectively reduces drift in sequences with strong
appearance overlap (e.g., eee 02), whereas UWB constraints
provide more reliable improvements in sequences with limited
loop detection opportunities or poor visual conditions. These
results confirm that UWB is essential for accurate localization
when loop closure is unreliable. Moreover, the combination of
both modalities yields the most robust overall performance.

B. Evaluation under Degenerate Scenarios

To evaluate the robustness of the proposed system under
challenging conditions, we simulate three types of degenerate
scenarios with the NTU VIRAL dataset [7].

• Visual degradation: In construction environments, visual
degradation frequently occurs due to airborne dust, metal-
lic structures, and textureless surfaces. These conditions
reduce feature quality and lead to significant drift in VIO.
To simulate this scenario, we apply a Gaussian blur to the
image frames. In the subsequent experiments, we refer to
this scenario as (drift).

• Partial UWB visibility: Construction sites also present
challenges for incorporating UWB range constraints, as
signals can be blocked by structural obstacles or dynamic
occlusions from moving machinery and workers. Fol-
lowing the approach in [6], we simulate partial UWB
observability by randomly dropping range data from spe-
cific anchors for 5–10 seconds with a 1% probability per



4
2
0
2
4 X position diff

4
2
0
2
4

Po
sit

io
n 

Er
ro

r (
m

)

Y position diff

0 100 200 300
Time (s)

2

0

2
Z position diff

x (m)
10

0
10

y (m)
0

10

z (m
)

0

5

eee_01
2

0

2
X position diff

2

0

2

Po
sit

io
n 

Er
ro

r (
m

)

Y position diff

0 100 200 300 400
Time (s)

2

0

2 Z position diff
x (m)

100y (m) 0

z (m
)

0

5

nya_02

Ground Truth
VINS-Fusion
Proposed

Fig. 5. Qualitative results of eee 01 and nya 02 sequences with degenerate scenarios (drift + drop).

TABLE II
ATE ROOT MEAN SQUARE ERROR (RMSE) (M) RESULTS FOR

DEGENERATE SCENARIOS.

Sequence VINS-
Fusion

VINS-
Fusion
(drift)

Ours
(drift)

Ours
(drop)

Ours
(drift +
drop)

eee 01 0.558 2.112 0.331 0.347 0.423
eee 02 0.640 0.766 0.342 0.334 0.386
eee 03 0.482 1.036 0.319 0.295 0.380
nya 01 0.510 1.088 0.432 0.318 0.478
nya 02 0.463 0.825 0.263 0.289 0.258
nya 03 0.841 1.262 0.282 0.273 0.298

Average 0.582 1.181 0.328 0.309 0.371

message. This scenario is referred to as (drop) in the follow-
ing experiments. Fig. 4 illustrates blocked intervals. The
accompanying table reports dropout statistics, including
the durations with 1-3 anchors simultaneously blocked
and total loss rates ranging from 50% to 64%.

• Combined scenario: This is the most challenging case,
with both visual degradation and UWB dropout applied
simultaneously. It evaluates whether the proposed method
can maintain localization performance despite degradation
in multiple sensor modalities. We refer to this scenario as
(drift + drop) in the following experiments.

Table II reports the ATE results under simulated degenerate
scenarios. We compared the baseline VINS-Fusion with our pro-
posed method under three conditions: visual degradation only
(drift), UWB signal dropout only (drop), and both degradations
simultaneously (drift + drop).

Under the visual degradation scenario (drift), VINS-Fusion
shows a substantial performance drop, with average ATE in-
creasing by about 2×. In contrast, our method (Ours (drift))
achieves significantly lower ATE, demonstrating the effective-
ness of the proposed range constraints in mitigating visual drift.

When UWB signals are only degraded (drop), our system
maintains strong localization accuracy despite severe signal loss
conditions. As shown in Fig. 4, signal dropouts were simulated
with up to three anchors blocked and total message loss rates
exceeding 50%. These results demonstrate that the proposed
range factor, combined with visual loop closure, provides robust
performance even under intermittent UWB observability.

In the most challenging condition (drift + drop), where both
visual and range sensing are degraded, our method demonstrates
an average ATE of 0.371m, as shown in Table II. Although

slightly worse than the individual degradation cases, it still
significantly outperforms VINS-Fusion, confirming that tightly
coupled multi-modal fusion ensures robust localization under
severe sensor degradation. As illustrated in Fig. 5, the proposed
method yields lower trajectory error than the baseline.

IV. CONCLUSION AND FUTURE WORK

This paper presented a robust visual SLAM system inte-
grating VIO, loop closure, and UWB measurements via an
interpolated range factor within a factor graph framework. The
proposed system reliably operates in challenging construction
environments, characterized by visual degradation and inter-
mittent UWB signals. Extensive experiments demonstrated a
significant reduction of trajectory drift under sensor degradation
conditions. To facilitate reproducibility and comparative bench-
marking, we will publicly release the simulated UWB-degraded
dataset and evaluation setup used in our experiments.

In future work, we plan to incorporate a dedicated anchor
initialization step, as anchor positions currently rely solely on
joint graph optimization. Furthermore, we aim to explicitly
model and handle NLoS effects in UWB measurements to
enhance robustness. Field evaluations will be conducted at
real-world construction sites to validate both practicality and
scalability under varying UWB anchor configurations.
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