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Abstract— In this paper, we present a novel method of manip-
ulation skill acquisition for performing construction activities.
We show that construction activities like building a wall can
be performed by iteratively repeating manipulation tasks that
are represented as a sequence of constant screw motions. Our
approach involves setting up a simulated construction activity
in a Virtual Reality (VR) environment, where the user can
provide demonstrations of the object manipulation skills needed
to perform the construction activity. We then exploit the screw
geometry of motion to approximate the demonstrated motion
as a sequence of constant screw motions. For performing the
construction activity, we generate the sequence of manipulation
task instances and then compute the joint space motion plan
corresponding to each instance using screw linear interpolation
(ScLERP). We evaluate our framework by performing the
brick wall building activity using a single demonstration of
the pick-and-place manipulation skill in VR and executing
the activity using a 7 degree-of-freedom (7-DoF) robot in
simulation. Through these experiments, we show that our
approach is robust to building different types of walls (i.e., walls
with different brick layouts) using just a single demonstration
of picking and placing a brick over another brick.

I. INTRODUCTION

Robotic manipulation plays an increasingly significant role
across a multitude of applications ranging from assistive
robotics to industrial automation. In particular, within the
construction industry, there is a high demand for robots to
perform various tasks involving high precision and complex-
ity, such as bricklaying, installing ceiling tiles, beam align-
ment, and component assembly. These tasks are challenging
due to the kinematic constraints on the robot’s end effector
during motion. For instance, in bricklaying, each brick must
be placed with its bottom face parallel to the ground and
correctly oriented relative to the bricks in lower layers (see
Figure 1). The whole activity of bricklaying is in essence
repeating the motion of picking up a brick and laying it on
the floor or on top of another brick. Thus, in principle, if the
robot knows how to lay one brick and if it is given the layout
of the bricks in the wall, it should be able to build the whole
wall. In this paper, we study this problem of performing an
activity that consists of repetitions of the same task through
the example of bricklaying.

1The authors are with the Department of Mechanical
Engineering, Stony Brook University, Stony Brook, NY,
USA. {wangyi.liu, dasharadhan.mahalingam,
nilanjan.chakraborty}@stonybrook.edu.

2The author is with the Department of Civil Engineering, Stony Brook
University, USA. ci-jyun.liang@stonybrook.edu.

This work was partially supported by the US Department of Defense
through ALSRP under award No. HT94252410098, a SBU OVPR award,
and a SBU LINCATS award.

Fig. 1: CONSTRUCTION ACTIVITY SETUP: Construction of a
three-layer wall with a total of nine bricks in a simulation envi-
ronment. The bricks are stacked in a pile initially (solid red bricks
on the left of the image). The generated task instances showing
the goal poses of the bricks for constructing a wall, visualized as
translucent bricks on the right side of the image.

We consider the bricklaying problem in the context of pro-
gramming by demonstration [1], where we assume that the
demonstration is given in a virtual reality (VR) environment.
Note that there are a variety of methods for acquiring demon-
strations for robots, namely teleoperation, kinesthetic demon-
stration, VR-based demonstrations, demonstrations from hu-
man workers, and also video demonstrations. Teleoperation
requires additional hardware, and kinesthetic demonstrations
may be hard to acquire because it is difficult to set up a
realistic physical construction scenario. Furthermore, human
worker demonstrations are hard to obtain. Video demonstra-
tions do not give direct information of the motion of the
objects in SE(3) (the group of rigid body motions). VR-
based demonstrations, although they require some additional
hardware, namely, a VR headset, are easy and cheap to obtain
and give the motion of the object directly. The motion of the
object which is a curve in SE(3) contains the constraints that
characterize the motion (which we model as one-parameter
subgroups of SE(3) or constant-screw motions) [2].

Contributions: We present a novel three-step approach for
completing complex construction tasks: (a) Given a specific
task, we build a simple environment in the virtual reality
(VR) environment, move the object with the controller to
finish the task, and collect the object’s path in SE(3). (b)
We segment the motion of the end effector in the task space
into a sequence of constant screws and extract the essential
constraints based on the object poses. (c) For the new task
instances that arises for completing the activity, we replicate
the segmented screws with the new object poses. Then,
we compute the motion plan based on ScLERP [3], which
automatically ensures that the constant screw constraints
embedded in the demonstrated motion are satisfied. We use
the example of bricklaying to illustrate our approach.



Fig. 2: SCHEMATIC SKETCH OF MOTION ESTIMATION FOR BUILDING A WALL: Left - The collected demonstrations D in VR
which consists of a sequence of SE(3) poses which are represented with blue markers. Center - Segmenting the demonstration D as
a sequence of constant screw motions, {D1,E1, . . . ,Eu}, the “Key Segments” (GP1 and GP2) are determined based on the region-of-
interest centered at the initial and final object poses, O1 and O2 respectively. Right - Given new initial and final object poses, O′

1 and
O′

2, the “Guiding Poses” GP ′
1 and GP ′

2 are determined by transforming GP1 and GP2 with respect to the new object poses.

II. RELATED WORK

Learning from Demonstration (LfD) [1] is a learning
paradigm which focuses on using human guided demonstra-
tions to train robots. In the context of automating construc-
tion, LfD approaches such as reinforcement learning (RL)
and imitation learning (IL) have been employed with the aim
of learning policies that can perform tasks autonomously [4]–
[6]. These approaches require large amounts of data to train
a successful policy. The ability to create highly controllable
and flexible environments that are safer than real world
construction environments have made VR environments an
attractive platform for collecting such demonstrations. VR
platforms have significant advantages in the development
and simulation of realistic construction environments [7]
thus advancing the field of autonomous construction [8]–
[10]. However, such solutions employ RL and IL approaches
that still require a lot of demonstrations for training [11]–
[13]. In this work we focus on exploiting the screw ge-
ometry of motion to efficiently make use of demonstrations
collected in a VR environment for automating construction
tasks. The authors in [2] solve the problem of motion
generation for complex manipulation tasks using kinesthetic
demonstrations. This work builds upon those results to show
that activities consisting of repetitive complex manipulation
tasks can also be performed using demonstrations which are
collected in a VR environment.

III. MATHEMATICAL PRELIMINARIES

In this section, we present a brief review of the mathe-
matical background required to understand this work.
Screw Displacement: Chasles-Mozzi theorem states that the
general Euclidean displacement/motion of a rigid body from
the origin I to T = (R,p) ∈ SE(3) can be expressed as a
rotation θ about a fixed axis S, called the screw axis, and
a translation d along that axis. Plücker coordinates can be
used to represent the screw axis by ω and m, where ω ∈ R3

is a unit vector that represents the direction of the screw
axis, m = r × ω, and r ∈ R3 is an arbitrary point on
the screw axis. Thus, the screw parameters are defined as

ω,m, h, θ, where h is the pitch of the screw and θ is its
magnitude. In general, for pure rotation and general screw
motion, h is finite, while for pure translation, h = ∞. If
R ̸= I, then by using the standard procedure to obtain the
rotation axis and magnitude from the rotation matrix R, we
can determine ω and θ. The pitch is given by h = ωTυ and
m = υ − hω, where υ =

[
(I− eω̂θ)ω̂ + θωωT

]−1
p. If

R = I, then the motion is pure translation, where h = ∞
and m = 0 by definition. We can obtain θ and ω from
θ = ||p|| and ω = p/||p||. A constant screw motion is a
motion where the parameters ω,m, and h stay constant
throughout the motion.

Given the screw parameters ω,m, h, the screw displace-
ment for a motion of magnitude θ can be obtained using the
matrix exponential, T = eξ̂θ. Here, ξ̂ ∈ se(3) and ξ ∈ R6

are the unit twist and unit twist coordinates associated with
the motion. They are defined as,

ξ̂ =

[
ω̂ m+ hω
0 0

]
, ξ =

[
m+ hω

ω

]
for h ̸= ∞ (1)

ξ̂ =

[
I ω
0 0

]
, ξ =

[
ω
0

]
for h = ∞ (2)

Task Instance: Objects affecting the generation of motion
plans for manipulation tasks are defined as task-related
objects and the set O = {O1,O2, . . . ,Ou} containing the
SE(3) poses of all the task-related objects is defined as a
task instance.
Demonstration: A demonstration of a manipulation task is
a sequence of SE(3) poses D = ⟨D1,D2, . . . ,Dv⟩ that
defines the motion of the manipulated object.

IV. PROBLEM STATEMENT

Consider that we are given a single demonstration D
of an object manipulation skill that is required to perform
an activity along with the corresponding task instance O.
The problem that we are trying to solve can be stated as:
Given a demonstration D of a manipulation task and its
corresponding task instance O, determine the sequence
of task instances ⟨O1,O2, . . . ,Ok⟩ and the joint space
motion plan M = ⟨Θ1,Θ2, . . . ,Θl⟩ required to transfer



the manipulation task to the new task instances for
successfully completing an activity. For the brick wall
building activity, D defines the motion that a brick goes
through during the stacking process and O = {O1,O2}
consists of the initial pose O1 and the final pose O2 of
the brick. Coincidentally, O1 = D1 and O2 = Dv .

The above problem can be solved by solving the following
three three sub-problems:
Constraint Extraction: Given a demonstration D, we need
to extract the essential task constraints, i.e., the constraints
that characterize the task and should be satisfied by all task
instances.
Determination of Task Instances: For constructing a wall,
we also need to determine the sequence of task instances
which specify the order and pose at which the bricks are
placed. We assume that we are given a pose B ∈ SE(3)
denoting the starting pose of the wall and the specification
of the wall in terms of straight, curved or corner along with
the number of bricks in each layer (β), number of layers
(α), and the horizontal offset between adjacent layers (δ).
Using this information, we need to determine the sequence
of task instances that need to be executed to complete the
construction activity.
Motion estimation: After computing the sequence of task
instances, we now have to determine the joint space motion
plan that can successfully execute the motion while satisfying
the extracted task constraints.

V. SOLUTION APPROACH

Demonstration Acquisition: We collect demonstrations of
manipulation tasks in a VR environment. The VR environ-
ment was built in Unreal Engine 4 (UE4) [14] and allows the
user to interact with objects in the VR environment by means
of a VR headset. We used the Meta Quest 2 [15] headset in
our work. The environment is set up such that it contains
two bricks, one that the user can pick up and manipulate
and the other is placed at another location denoting the
start of the wall. The user can provide a demonstration by
picking up the movable brick and placing it next to the first
brick. The motion of the brick that is being manipulated is
recorded and used as the demonstration. This demonstration
implicitly captures the constraints required to stack bricks
without colliding with the neighboring bricks.
Extraction of Task Constraints: From the provided demon-
stration, we then extract the task constraints as a sequence
of constant screw motion constraints. By following the
approach proposed in [2], we are able to extract the motion
invariants and are able to determine the object motion for
a new task instance. These constraints are independent of
the choice of coordinate frame and allow us to successfully
transfer the extracted constraints to a new task instance.
Generation of Task Instances: In this work, we assume that
the bricks are stacked in a known initial location. Consider
that the dimension of the brick along its length, breadth
and width are ℓ, b, and h respectively. Let ϵℓ and ϵh be the
spacing required between adjacent bricks in the same layer
and adjacent layers. Given the starting pose of the wall, B,

depending on the type of wall, we can also determine the
goal poses of the bricks as,

Ti,j =


B, i = 1, j = 1

Ti−1,1Z(h+ ϵh)X(∆(i, δ))R(θ), i > 1, j = 1

Ti,j−1X(ℓ+ ϵℓ)R(θ), i ≥ 1, j > 2
(3)

Where X(t) and Z(t) are SE(3) transformations that
represent translation along the vectors

[
1 0 0

]T
and[

0 0 1
]T

respectively by a magnitude of t meters and
R(t) is a SE(3) transformation that represents pure rotation
about the axis

[
0 0 1

]T
by the magnitude t.

X(t) =
(
I,
[
t 0 0

]T)
, Z(t) =

(
I,
[
0 0 t

]T)
(4)

R(t) =


cos t − sin t 0 0
sin t cos t 0 0
0 0 0 0
0 0 0 1

 (5)

Here, ∆(x, y) is a real valued function which determines the
offset between bricks in adjacent layers and is defined as,

∆(x, y) =

{
y, if x is even
0, otherwise

(6)

The curvature of the wall is determined by θ. For a straight
wall, θ = 0. Setting δ = 0 results in the layers being aligned.

By modifying equation (3) for the case i ≥ 1, j > 2 we
can also determine the goal pose of the bricks for a corner
wall,

Ti,j = Ti,j−1X(∆(i+1, ℓ′+ϵℓ))Y(∆(i, ℓ′+ϵℓ))R(θ) (7)

with θ = 90◦ at the corner and θ = 0◦ everywhere else. Here
ℓ′ = (ℓ + b)/2, and Y(t) is an SE(3) transformation that
represents pure translation along the vector

[
0 1 0

]T
.

Equations (3) and (7) determine the goal pose of the brick
given the indices i and j which denote which layer the brick
is in and where the brick is positioned in a given layer
respectively. Here 1 ≤ i ≤ β and 1 ≤ j ≤ α.

Using Ti,j , we can now determine the sequence of the
task instances. Each task instance Ok consists of the initial
pose and the final pose of the brick. Since we assume that
the bricks are stacked initial at a known location and the goal
pose can be determined using Ti,j , we can easily determine
the sequence of task instances, ⟨O1,O2, . . . ,Ok⟩.
Motion Generation: Once the sequence of task instances
have been determined, we can transfer the constant screw
constraints that were extracted from the demonstration by
following approach proposed in [2]. This defines the motion
of each brick in terms of a sequence of SE(3) poses,
G1,G2, . . . ,Gw where each pair of consecutive poses, Gi

and Gi+1 define a constant screw constraint. We can then
determine a feasible grasp pose that would allow us to
perform this motion using the approach proposed in [16]
and then use Screw Linear Interpolation (ScLERP) combined
with Jacobian pseudo-inverse to compute a motion plan in



the joint space [3]. This ensures that the generated motion
plan satisfies the extracted constant screw constraints.

A schematic sketch describing the solution approach is
shown in Figure 2.

VI. EXPERIMENTAL RESULTS

In this section, we provide experimental results of per-
forming the construction activity of building a wall using our
proposed framework. We collected a single demonstration
of the manipulation task in the VR environment and then
transfer that demonstration to construct five walls, each of
different specifications (Figures 1, 3). For more details please
refer to the supplemental video (https://youtu.be/
6saerS5M68E). All the experiments are carried out in
the PyBullet simulation environment using a 7 DoF Franka
Emika Panda robot.

(a)

(b)

Fig. 3: BRICK WALL CONSTRUCTION: (a) Straight wall con-
struction (b) Corner wall construction

For the brick size we chose standard USA-size with ℓ =
19.4 cm, b = 9.2 cm, and h = 5.4 cm. We conducted our
approach with a single demonstration for 5 experiments:

(1) Straight wall 1: A three-layer wall of nine bricks is
assembled parallel to the x-axis.

(2) Straight wall 2: Construction of a wall identical to the
previous experiment but rotated 30◦ with respect to the
x-axis.

(3) Straight wall 3: The wall is built parallel to the
y-axis, again re-using the original pick-up pose and
same configuration as experiment 1 and 2.

(4) Curved wall: A two-layer, 120◦ circular wall of six
bricks is erected.

(5) Corner wall: A three-layer wall corner consisting of
nine bricks (two intersecting runs of 6+3 bricks) is
assembled.

VII. CONCLUSION

In this work, we propose a novel framework that extracts
manipulation constraints from demonstrations which are col-
lected in VR to complete complex construction activities.

From a single task-space demonstration, our algorithm ex-
tracts coordinate-invariant screw constraints and reuses them
to synthesize motion plans for multiple sub-tasks.

Currently, our work is tested in a simulation environment.
We plan to verify the approach on real robots under real
construction conditions. Although this paper focuses on brick
laying, our method is general enough to apply to tasks like
ceiling tile installation, which we want to study in the future.
Currently, we assume a fixed-base manipulator with a limited
workspace; future work will consider scenarios with a mobile
manipulator performing the task.
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