Semi-Lazy Rearrangement Solver for Accelerating Task Planning Using
SPITE Dynamic Roadmaps

Marta Markowicz!, Stav Ashur!, James Motes! and Nancy M. Amato*

Abstract— In construction, we require collision-free planning
to work in complex environments full of materials and debris.
We introduce a rearrangement planning approach that aug-
ments a task planner leveraging lazy motion validation with a
dynamic roadmap that quickly approximates the feasibility of
motions after object rearrangement. This approach enables the
task planner to produce candidate plans that are more likely to
yield valid motion plans without significant overhead, thereby
reducing the number of iterations between task planning and
motion validation layers and decreasing the overall planning
time.

I. INTRODUCTION

Rearrangement planning is a critical capability of robots
operating in construction environments, enabling safe and
efficient operations in cluttered workspaces. Common tasks
may include structure assembly of prefabricated components,
materials transport, and tool retrieval. In more constrained
scenarios, rearrangement of other objects may be necessary
to enable an item’s retrieval.

Formally, in the robot rearrangement planning problem,
we are given a robot r, an environment E containing n static
objects O = {01, ...,0, } With starting positions {s1, ..., Sn },
and n sets of target positions {77, ..., T}, }. Our goal is to find
a sequence of valid operations of r which will result in new
object positions {#1, ..., t, } such that ¢; € T; fori € {1, ...,n}.

Moving construction materials (e.g., steel beams, prefab
panels) to temporary positions during assembly often creates
spatial conflicts in tightly coordinated worksites, restricting
future operations. For instance, displacing rebar stacks might
block crane access for subsequent concrete pours. The com-
plexity of motion planning, inherent to rearrangement plan-
ning, is thus compounded by the combinatorial challenge of
finding a valid sequence of operations leading to the desired
result, which may require a number of steps exponential in
n (e.g. the Towers of Hanoi).

Due to the unintuitive nature of the configuration space
(C-space) of robots with a high number of degrees of
freedom (DOF), deciding which operations will be rendered
(temporarily) infeasible after a single object has been moved,
requires an expensive computation of many motion planning
problems. The exponential size of the combinatorial search
space means that computing the feasibility of every possible
operation conditioned on moving an object to a new loca-
tion is impractical. Simpler heuristics are thus required for

IMarta Markowicz, Stav Ashur, James Motes, and Nancy M. Am-
ato are with the Siebel School of Computing and Data Science at
the University of Illinois Urbana-Champaign, 201 N Goodwin Ave, Ur-
bana, IL 61801, United States of America, {martasm2, stavaz,
jmotes2, namato}@illinois.edu

efficiently pruning the state search tree. The authors in [1]
present a lazy rearrangement solver (LRS) which checks
only the grasp positions for collisions with object start and
goal positions to generate reachability constraints used to
prune a search tree over object positions. Once a sequence
of object positions is found, robot motions for transitioning
between object positions are computed to validate the pro-
posed sequence of object positions. Failed motion plans lead
to further pruning of the search tree and additional search
iterations.

In this short paper, we propose the semi-Lazy Rearrange-
ment Solver (sSLRS) which augments the LRS approach with
a heuristic motion validity check during search time by lever-
aging the SPITE method [2], originally designed for motion
planning in modified environments. SPITE takes a roadmap
graph as input, generates simple geometries approximating
the swept volume associated with each roadmap edge, and
stores them in AABB-trees. When an objects position is up-
dated, the AABB-trees are used for fast intersection checks,
and roadmap edges are labeled as valid or of unknown
validity. SPITE naturally allows for a quick update of a
roadmap’s approximate validity with respect to a new set of
object positions. This updated roadmap can provide a quick
estimate of the likelihood that there exist a valid path for
moving an object with respect to the current position of other
objects allowing for the search to be biased towards actions
with high motion validity probability.

The preemptive approximate motion validity check and the
search bias it generates reduces the total number of motion
planning queries in problems for which the path approaching
grasp configurations are likely to be in conflict with potential
object positions. For an invalid path, the LRS would only
discover the conflict after generating a rearrangement plan
and validating all of the motions prior to the invalid one.
We include a proof-of-concept experiment demonstrating the
potential of this approach in Section IIL

II. METHOD

In this section, we provide an overview of the augmen-
tation of LRS with SPITE to create the semi-Lazy Rear-
rangement Solver. For details on the underlying solver or on
SPITE, please see [1] or [2] respectively.

A. Pre-processing

Given a set of object start and goal positions (and a set
of potential object positions for temporary placement), we
generate a set of grasp configurations to pick/place objects at
these positions. These are used to generate the reachability



constraints from LRS [1] and prime the roadmap used in
SPITE [2].

We then use PRM [3] to generate a roadmap (ignoring
all movable objects) which attempts to connect the grasp
configurations in a single connected component (we assume
that this is successful). Next, the SPITE algorithm creates
outer-approximations of swept volumes of every edge in the
input roadmap and every movable object in the environment,
where an outer-approximation of a body B is a body B’
that fully contains it. These approximations are stored in
an AABB-tree to allow for fast intersection checks. Given
a new set of object positions, in our case, the result of a
potential rearrangement step changing the positions of some
objects, we can quickly estimate changes in edge validities by
using the AABB-tree. This allows for fast, semi-lazy collision
checks.

B. Lazy Rearrangement Solver Query

The LRS method considers a search space of object
placements from a set of candidate positions. The edges
of the search spaces represent the transition of a single
object to its goal position. The method uses the precomputed
reachability constraints to prune the search space neighbors
of a state, a set of object configurations, by only considering
transitions which have a valid grasp position at both the
object’s current position and its goal position. This removes
neighbors which would otherwise be found invalid only after
full motion validation.

LRS creates a search tree over object placements rooted at
the starting configuration of the objects (Figure 1). Edges in
this tree represent the transition of a single object (usually to
its goal position). The method uses precomputed reachability
constraints to prune edges between states s and s’ created
by moving an object o, if there exists no valid grasp position
for 0o in s’ due to the rest of the object positions in
the configuration represented by that state. This removes
neighbors which would otherwise be found invalid only after
a full motion validation of the object movement.

C. Semi-Lazy Motion Validation

In the original LRS method [1], no motion validation is
done during search time, but rather, the solver produces a
candidate plan of object movement actions which transi-
tions the system from the start configuration to the goal
configuration of object positions. If an edge fails a motion
validation, that is, the pick/place task it describes is found
to be infeasible, it is pruned from the search tree, and the
search resumes, looking for an alternative sequence of object
movements.

LRS significantly reduces the total amount of motion plan-
ning required to successfully find a valid plan, but relies on
the reachability constraints, i.e., only grasping configurations,
to decide whether an edge between states is likely to be valid.

In this work, we further inform the tree search of motion
viability, by performing semi-lazy motion validation using
the SPITE dynamic roadmap. The dynamic roadmap is
initialized by performing heuristic collision checking against

(a) Initial Expansion: The search begins by considering moving
each object individual from its start to its goal position.

(b) Reachability Prune: The movement of any object for which its
current position or goal position violates a reachability constraint
is pruned. No further expansion is considered from that object
configuration as indicated by B and its subtree which is never
explored.

(c) Candidate Plan: The search continues until a set of object
movements transitions the system from the start configuration to
the goal configuration as shown in D and its abstracted subtree.
SLRS performs semi-lazy motion validation during this expansion,
so candidate plans are more likely to have valid motions than the
original LRS approach.

(d) Motion Prune: Each proposed object movement in the candidate
plan must be fully validated by a motion planner. Any movement
found to not have a valid robot motion is pruned (along with its
subtree) as shown in D and its candidate plan in the subtree.

(e) Final Solution: The search continues until a candidate plan is
found and fully validated in C' and its candidate plan.

Fig. 1: This figure depicts the steps of (s)LRS (a-e). Each
of the four states marked A, B,C, and D represent a con-
figuration of all of the objects. Extended cones represent
abstracted subtrees. Red Xs represent pruned subtrees. Squig-
gled arrows represent paths through the subtree. Check marks
represent found candidate plans.



(b)

Fig. 2: A scenario showcasing the intuitive difference be-
tween LRS and sLRS. The figure shows a top view of shelf,
with its top face made transparent for clarity, that contains
three cylindrical objects, and a 6 DOF manipulator with
a simple endeffector. In Figure 2a start (blue) and target
(red) positions of an object are shown alongside valid grasp
positions of the robot. In Figure 2b a grasping motion is
shown using intermediate configurations. Such an edge in
the state graph may be pruned using the motion validation
in sLRS but explored when only using reachability pruning
in LRS.

all environment obstacles, and all roadmap edges are labeled
either valid or unknown. When estimating the validity of a
transition between states s and s’, the moved object o is
passed into the SPITE update function, which updates the
roadmap edge validities to account for its suggested position.
We then query this roadmap for a path between o’s positions
in s and s’, and compute a likelihood of motion feasibility
from the ratio of known valid edges to total edges in the path.
We then use the inverse of this ratio as a weight function
in our tree search, biasing the search towards sequences of
object movements with higher likelihoods of having viable
motions. See Figure 2 for an illustration.

Since the candidate path generated during state search
space pruning can include both valid and unknown edges,
we must still perform full collision checks on the unknown
edges to determine their validity (just as LRS performs full
motion validity at this stage). If we find invalid edges in the
candidate path, we must continue checking potential paths
in the roadmap with valid and unknown edges until we are

Fig. 3: A manipulator  with 2DOFs in a 2D environment £
with obstacles 01 and 0». The outer-approximation of one of
the links of 7 is an OBB (pink). The obstacles have outer-
approximations in the form of AABB (gray). An edge e of the
roadmap is shown as a sequence of intermediates. o; renders
the edge of in the c-space of (r, E') “unknown”, while oo has
no effect on it.

able to confirm a fully valid path. Similarly to LRS, if no
such path is found, the neighbor is pruned from the tree, and
the tree search resumes.

By using SPITE for semi-lazy motion validation we are
able to efficiently bias the search space by estimating the
validity of transitions resulting in fewer edges between states
later found to describe invalid motions, and thus fewer
total motion plans, fewer iterations of object movement
sequencing and motion validation, and faster total runtimes
as illustrate in the next section.

D. Non-monotonic Problems Instances

Non-monotonic problems are those in which an object
must be moved to an intermediate position before being
moved to its goal. This is common when there are reach-
ability dependencies between object start and goal positions
which necessitate the non-monotonic actions. LRS addresses
this by considering random perturbations of object positions,
validating the motions to achieve these perturbations. In this
iteration of the work, we maintain the original LRS approach.
We discuss how SPITE may be leveraged for more intelligent
perturbations in Section IV.

III. EVALUATION

To demonstrate the enhanced performance of SLRS we ran
preliminary experiments on a rearrangement problem using
a 6 DOF manipulator. The environment consists of a shelf
with 3 cylindrical objects, with a 3x6 grid of potential object
placements on the shelf, as shown in Figure 4.

We ran 50 trials with randomly generated start and goal
positions for the objects selected from the set of positions
highlighted in Figure 4. The two back corner positions were
not considered as the motion difficulty associated with them
obfuscated the impact of the proposed contribution.



LRS sLRS

Metric Median Mean Median Mean
Reachability Prunes 5 1842 4 1836
Motion Prunes 0.5 2.17 0 1.85
Perturbations 0.5 3.17 0 3.17
Time Taken (s) 8.75 17.20 8.68 16.12

TABLE I: Statistics for SLRS vs. LRS

Fig. 4: An illustration of the environment described in
Section III. Several configurations are shown where the robot
is grasping one of the cylindrical objects. Note that the top
face of the shelf is transparent for the sake of clarity.

In this simple, proof of concept scenario, the amount
of pruning due to motion validation is not high for either
method, as there are only 3 objects randomly configured
among 16 positions. As such, there are many problem
instances in which the position of the objects do not impede
the movement of other objects by the robot.

Proportionally, we see a 15% decrease in the average num-
ber of motion validations, which leads to a small reduction
in average planning time. We expect to see both of these
percentages increase as the density of the objects in the scene
increases.

Implementation details: Our code was developed using
the Parasol Planning Library (PPL [4]). All experiments were
run on a laptop computer with an Intel core i7-11800H at
2.30GHz, with 32 GB of RAM.

IV. CONCLUSION AND FUTURE WORK

In this extended abstract, we present the semi-Lazy Rear-
rangement Solver, an extension of the Lazy Rearrangement
Solver [1] that exploits the dynamic roadmap offered by
SPITE [2] to bias the search towards object movements
that are likely to have valid motions. We provide a proof-
of-concept rearrangement scenario in Section III with pre-
liminary results demonstrating the expected behavior for the
limited problem size.

In future work, we will leverage the dynamic roadmap’s
ability to estimate motion feasibility after object movement
to not only bias the tree search, but to select object perturba-
tion candidates based on the increased motion viability after
their removal and choose target positions which minimize
the likelihood of requiring further perturbations.

REFERENCES

[1] R. Wang, K. Gao, J. Yu, and K. Bekris, “Lazy rearrangement planning
in confined spaces,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 32, 2022, pp. 385-393.

[2] S. Ashur, M. Lusardi, M. Markowicz, J. Motes, M. Morales, S. Har-
Peled, and N. M. Amato, “SPITE: Simple polyhedral intersection
techniques for modified environments,” in Algorithmic Foundations of
Robotics XVI (WAFR), 2024.

[3] L. E. Kavraki, P. §vestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation (TRA), vol. 12,
no. 4, pp. 566-580, Aug. 1996.

[4] P. Lab, “Parasol planning library (PPL),” https://github.com/parasollab/
open-ppl, 2025.


https://github.com/parasollab/open-ppl
https://github.com/parasollab/open-ppl

	Introduction
	Method
	Pre-processing
	Lazy Rearrangement Solver Query
	Semi-Lazy Motion Validation
	Non-monotonic Problems Instances

	Evaluation
	Conclusion and Future Work
	References

