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Fig. 1: Smooth, collision-free motions generated by INSATxGCS (IxG) for various tasks with three Motoman HC10DTP arms operating simultaneously in a
18-DoF multi-arm assembly scenario.

Abstract—Predictive models significantly enhance robot perfor-
mance in terrain manipulation tasks, crucial for applications such
as construction and planetary exploration. However, accurately
modeling terrain deformation is computationally demanding due
to the high-dimensional nature of detailed terrain representa-
tions. This paper presents a scalable learning-based framework
for terrain dynamics prediction and manipulation using Graph-
based Neural Dynamics (GBND). Our approach represents ter-
rain deformation through particle graphs, dynamically identi-
fying a small, active subgraph (hundreds of particles) within
a potentially massive terrain graph (millions of particles). To
efficiently determine this active region, we introduce a learned
Region of Interest (RoI) proposer, driven by robot control
inputs and current scene observations. Additionally, we propose
novel boundary feature encodings to ensure realistic dynamics
prediction within the RoI, effectively preventing particle pene-
tration at boundaries. Experiments demonstrate that our method
achieves superior prediction accuracy while significantly outper-
forming naive GBND approaches in computational efficiency. We
validate our approach through excavation and shaping tasks
across terrains of varying granularity. Project page: chaoqi-
liu.com/scoopbot.

I. INTRODUCTION

Autonomous terrain manipulation is critical for tasks in
construction and planetary exploration, where human labor
may be limited or unavailable [1, 2]. Robots performing these
tasks must accurately predict terrain deformation resulting
from interactions such as scooping, dumping, or pushing.
Traditional analytical or geometric modeling techniques have
limited flexibility and typically require extensive parameter
tuning [3]. Terramechanics-based simulators can address more
complex scenarios but are computationally intensive and chal-
lenging to calibrate [4, 5].
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Learning-based approaches provide an alternative, directly
capturing complex terrain behaviors from data [6, 7]. Graph-
based Neural Dynamics (GBND), which employ Graph Neu-
ral Networks (GNNs) to model particle interactions, have
demonstrated success in deformable object manipulation tasks
due to their strong relational inductive biases [8, 9]. Prior
GBND approaches have been applied to rigid bodies [8],
elastic-plastic materials [10], fluids, and granular media [9].
However, these methods have primarily focused on bounded
environments and tabletop scenarios with limited volume and
static observation setups.

This paper extends GBND methods to large-scale, poten-
tially unbounded terrains represented by millions of particles
– far exceeding typical GPU memory capacities. Our core
innovation is a learned Region of Interest (RoI) proposer,
dynamically identifying a localized subset of terrain particles
likely to move during interactions. Restricting computations
to this smaller active subgraph substantially reduces computa-
tional load while enhancing prediction accuracy. Additionally,
we introduce novel boundary feature encodings, ensuring
accurate predictions inside the RoI and preventing unrealistic
particle behaviors at boundaries.

Experiments validate our approach on excavation and shap-
ing tasks across different terrain materials, demonstrating sig-
nificant improvements in computational efficiency and predic-
tion accuracy compared to traditional simulators and geometric
RoI baselines.

II. METHOD

A. Overview and Background

We aim to efficiently predict terrain deformation from robot-
terrain interaction to support planning. Given terrain state xt

and robot control ut, we predict x̂t+1 = f(xt, ut) at 10 Hz. We
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leverage Graph-based Neural Dynamics (GBND) [9], model-
ing the environment as particles in a graph xt ≡ Gt(Vt, Et),
where nodes v

(i)
t represent particles and edges e

(k)
t denote

local interactions. Dynamics are learned using Graph Neural
Networks (GNNs) with message passing, which consists of
three steps. First, node and edge features are encoded into
latent representations:

z0[v
(i)
t ] = f enc

V (v
(i)
t ), z0[e

(k)
t ] = f enc

E (e
(k)
t ). (1)

Next, latent messages propagate through the graph for L
iterations. At each iteration l, edge and node latent vectors
are updated:

zl+1[e
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t ] = f prop

E (zl[e
(k)
t ], zil , z

j
l ), (2)

zl+1[v
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(
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Finally, a node decoder predicts particle displacements:

∆p̂
(i)
t = f dec

V (zL[v
(i)
t ]), p̂

(i)
t+1 = p

(i)
t +∆p̂

(i)
t . (4)

The encoder, propagation, and decoder functions (f enc
V , f enc

E ,
f prop
V , f prop

E , f dec
V ) are trained via backpropagation.

B. GBND for Large-Scale Terrain Modeling

To model terrain dynamics, we first construct a particle-
based scene graph from perception data. Given an observed
terrain surface map, we densely instantiate terrain particles
Pt = {p(i)t }Np

i=1 throughout the terrain volume to a predefined
depth. We also instantiate tool particles on the robot’s end
effector. Particles are connected to their k nearest neighbors
within a specified distance threshold.

Our baseline node features are defined as:

v
(i)
t ≜ [v

(i)
t−H:t−1, u

(i)
t , c(i)]⊤, (5)

where v
(i)
t−H:t−1 represents particle velocities over the last H

time steps, u(i)
t indicates direct robot-induced impulses, and

c(i) encodes the particle class (terrain or tool). Edge features
connecting particles i and j are defined as:

e
(k)
t ≜ [p

(i)
t−H:t − p

(j)
t−H:t, c

(i), c(j)]⊤. (6)

To improve computational efficiency, we dynamically iden-
tify a small Region-of-Interest (RoI) Rt(ut) ⊂ R3, defined by
a learned implicit function g(p, ut) (Sec. II-D). Only particles
inside the RoI are considered dynamic and form the active
subgraph used for GBND propagation, significantly reducing
computational costs while preserving accuracy.

C. Encoding RoI Boundaries as Node Features

Standard GBND approaches typically assume fixed,
bounded environments, implicitly learning boundary condi-
tions such as floors or walls [10, 11]. However, in large-scale
terrain manipulation with dynamic regions of interest (RoI),
the boundary conditions are not strict boundaries but rather
static terrain material unaffected by current interactions.

To accurately capture interactions at these RoI boundaries,
we incorporate estimated geometric normals into node fea-
tures. Particle normals are computed from local RoI point
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22.72Fig. 2: Comparing our method against full-scale GBND (FS) and geometric
region proposers with different size (Geo-X). Our method demonstrates
significant advantages in speed and GPU memory. ≈ 3,000 particles and
batch size 256 are used in these experiments, per sample measurements are
reported (i.e., divided by 256). Colors and labels are shared by both figures.

clouds using standard estimation methods [12]. Near bound-
aries, these normals provide valuable directional resistance
cues, effectively preventing unrealistic particle penetration.
Furthermore, encoding normals ensures translation invariance,
i.e., the model predictions remain consistent irrespective of
absolute particle positions:

∀∆p ∈ R3, f(p
(i)
t +∆p, ut) = f(p

(i)
t , ut) + ∆p. (7)

We empirically validate our boundary encoding. Compared
to baseline encodings (no encoding, and absolute height ‘z fea-
tures’), our normal-based encoding demonstrates superior gen-
eralization, maintaining accuracy across both in-distribution
and out-of-distribution test scenarios.

D. Convolutional Neural Net RoI Proposer

We define the region-of-interest (RoI) as an implicit function
g(p, ut), determined via a CNN-based heightmap predic-
tor. Specifically, we represent the RoI using a tool-centered
heightmap g̃(x, y), where points whose vertical coordinate
exceeds g̃(x, y) belong to the RoI, i.e., g(p, ut) = pz −
g̃(T−1

tool (px, py)). We refer readers to our complete paper for
a detailed discussion on the RoI proposer.

E. Planning Terrain Manipulation Trajectories

Our terrain manipulation planner selects among
parametrized scooping, pushing, and dumping actions to
minimize the predicted terrain shape difference from a target
heightmap. After each executed trajectory, the terrain is
updated, and planning repeats.

We adopt the widely-used penetrate-drag-scoop (PDS) tra-
jectory parametrization [1, 6] for scooping and pushing.
Dumping trajectories use a simpler 6D parameter space (loca-
tion, yaw, pre- and post-dump pitch angles).

The planner utilizes Model Predictive Path Integral
(MPPI) [13]. MPPI iteratively samples trajectory parameters,
rolls out predictions using our learned dynamics model, eval-
uates their scores based on terrain shape differences, and
updates its sampling distribution to focus on high-performing
regions.



III. EXPERIMENTS AND RESULTS

The computational performance and accuracy of the pro-
posed method were thoroughly evaluated and contrasted
against simpler baselines. Furthermore, the capability of our
method was assessed through its application to extended-range
excavation tasks. All experimental evaluations were conducted
using an Intel i9-13900K CPU and a single NVIDIA GeForce
RTX 4080 GPU.

A. Implementation Details

Our GBND architecture uses multi-layer perceptrons
(MLPs). We collected pre-training data using the SAPIEN sim-
ulator [14], as Nvidia Flex [15] exhibited unrealistic behaviors
at higher particle counts. Synthetic terrains were generated via
the diamond-square algorithm [16], producing approximately
3,000 small cubes per landscape, each populated with 5–10
particles. Particle sets were subsequently downsampled using
farthest-point sampling [17].

We simulated roughly 1,000 random robot-terrain interac-
tion trajectories and tracked downsampled particle motions
for training. The dynamics model was trained by regressing
particle trajectories using mean squared error (MSE). The
CNN-based RoI proposer was trained using corresponding
simulation data. Each forward dynamics prediction timestep
was set to 0.1 s.

B. Computational Efficiency and Accuracy

We evaluate our method’s efficiency and accuracy against
two baselines: (1) a full-scale GBND using all terrain particles
(FS), and (2) geometric RoIs (Geo-X), defined as cylinders
of diameter X cm centered at the scoop tip. Due to GPU
constraints, terrains are limited to 3,000 particles (50 cm ×
50 cm × 5 cm, particle density 0.5/cm3), much smaller than
typical field scenarios.

Figure 2 shows our learned RoI method achieves computa-
tional performance similar to the smallest Geo-X variant, while
significantly outperforming baselines in prediction accuracy.
GBND inherently struggles with distant particle jitter; restrict-
ing dynamics predictions to a learned RoI introduces inductive
biases that mitigate this issue. Small Geo-X RoIs fail to
encompass all moving particles, causing high prediction errors,
while large Geo-X RoIs suffer from jitter by unnecessarily
including static particles.

Table I highlights optimal efficiency at batch size b = 256,
with prediction time below 0.2 ms/sample, enabling planners
to evaluate hundreds of trajectories in seconds. Compared to
GPU-based simulation (SAPIEN 3.0 [14]), our method is an
order of magnitude faster, supports larger batch sizes within
GPU memory constraints, and can be fine-tuned for real-world
accuracy.

C. Real-World Terrain Manipulation

We validated our approach in real-world experiments on two
different materials: pebbles (0.8–1.0 cm grain size) and fine
play sand (grain size ≪1 mm). Terrains were contained within

Batch Ours Geo-6 Geo-12 Geo-18 FS SAPIEN
1 4.624 3.543 4.459 5.157 5.443 3.309 (CPU)
2 2.454 1.913 2.280 2.616 2.775 2.104
4 1.400 1.036 1.250 1.463 1.642 1.627
8 0.860 0.586 0.755 0.931 1.097 1.563
16 0.522 0.366 0.501 0.650 0.872 1.713
32 0.337 0.242 0.364 0.520 0.885 1.991
64 0.232 0.181 0.332 0.498 0.809 2.211
128 0.179 0.169 0.318 0.456 0.774 1.755
256 0.162 0.163 0.301 0.438 0.750 OoM
512 0.181 0.181 0.293 0.431 OoM OoM
1024 0.198 0.198 0.294 OoM OoM OoM

TABLE I: Average prediction time (ms) per sample as the batch size varies,
showing that 256 is an optimal batch size for our framework. 3000 tiny cubes
are simulated in each GPU parallelized SAPIEN scenes.

a box of dimensions 0.9 m×0.6 m×0.2 m for repeatability,
though the method generalizes naturally.

To fine-tune our model to real-world data, we collected 100
robot-terrain interaction trajectories recorded by an overhead
RGB-D camera. Scene point clouds were extracted from
depth images, excluding robot particles via proprioception
and retaining tool particles by re-sampling within the tool’s
convex hull. Due to inability to track individual particle
identities across frames, we trained with chamfer distance [18]
and earth-mover’s distance [19]. This fine-tuning improved
model accuracy by approximately 5–10% compared to the
simulation-trained baseline.

We tested two terrain shaping tasks: (1) excavating a
hole, and (2) forming a rectangular moat. Desired terrain
shapes were specified as 2D heightmaps, with L1 heightmap
differences as the evaluation metric. These shapes featured
sharp discontinuities, unattainable exactly due to the materials’
settling behaviors (angle of repose approximately 25–40◦).
The planner evaluated 1,500 candidate trajectories with an av-
erage planning horizon of 30 timesteps (3 seconds), requiring
20–30 seconds total planning time. Qualitative results (Fig. 3)
demonstrate successful terrain shaping.

We also implemented a heuristic baseline inspired by Yang
et al. [20], which uses dynamic programming to find axis-
aligned trajectories maximizing scooped material volume. Al-
though efficient, this baseline initially makes rapid progress
but fails to capture detailed terrain shapes due to neglecting
granular material settling (Fig. 4).
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Fig. 3: Sequences of heightmaps recorded during real-world manipulation.
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Fig. 4: Errors between the observed terrain and the target terrain after each
PDS trajectory. Interquartile ranges are shaded. 10 trials per scenario.

IV. CONCLUSION AND LIMITATION

We presented a framework for handling unbounded terrains
in graph-based neural dynamics (GBND) models that simul-
taneously learns a RoI and particle dynamics. Novel node
features are key to success of this model. Experiments show
that this method achieves orders of magnitude faster prediction
and GPU memory usage compared with naïve GBND models
or GPU-based physics simulators. It can be trained with both
simulated and real data, and when used as a model for planning
our method can achieve desired target shapes on real-world
excavation platforms.

There remains some limitations of our work that we would
like to address in future work. First, our RoI proposer does not
accurately model long-range terrain effects (e.g., landslides).
Second, our current platform uses an overhead camera to
update the terrain, and we would like to extend this to ego-
centric 3D mapping, in which our model may need to model
occluded parts of the terrain. Third, our models assume terrain
homogeneity, and future work should address heterogeneous
materials including terrains with embedded obstacles. Lastly,
the current dynamics model requires full-parameter fine-tuning
when moving to unseen materials, one potential solution is to
adapt physics-parameter conditioned GBND [21] for online
adaptation.
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