
  

  

Abstract—Integrating robots into construction workflows is 
challenging due to the complex and dynamic nature of 
construction sites, and the diverse workforce, many of whom 
lack formal training in robotics. To address these challenges, we 
introduce the Personal Autonomous Construction Assistant 
(PACA), a multimodal natural Large Language Model 
(mmLLM)-based interface designed to facilitate seamless 
communication between workers and robots in construction 
environments. PACA incorporates an Automatic Speech 
Recognition (ASR) engine to process spoken instructions in 
different languages, utilizing a Large Language Model (LLM) to 
interpret user intent and generate appropriate responses. When 
necessary, the LLM translates the command into robot actions, 
incorporating image-based reasoning to enhance decision-
making. The system also features a Text-to-Speech (TTS) engine, 
providing spoken feedback to ensure fully bidirectional and 
accessible interaction with construction workers. 

I. INTRODUCTION 

The construction industry has traditionally been slow to 
adopt automation compared to other sectors such as 
manufacturing or logistics [1]. While robotic solutions have 
been successfully integrated into controlled environments, 
construction sites present unique challenges that make robotic 
adoption particularly difficult. These environments are highly 
dynamic, often cluttered, and subject to unpredictable 
changes [2], requiring robots to operate under conditions that 
are significantly different from structured indoor settings. 
Moreover, construction tasks are frequently executed by a 
diverse workforce, with varying levels of technical expertise, 
which introduces an additional barrier to seamless human-
robot collaboration. 

Recent advancements in robotics and artificial intelligence 
(AI) have sparked growing interest in the use of autonomous 
systems for construction. Robots have been proposed for tasks 
such as bricklaying [3], material transport [4], and structural 
inspection [5], aiming to improve efficiency, safety, and cost-
effectiveness. However, a major limitation of existing 
approaches is the lack of intuitive and accessible interfaces 
for human-robot interaction [6]. Traditional robot control 
mechanisms, such as programming interfaces or tablet-based 
inputs, are often impractical for on-site workers who may not 
have the technical background to operate them effectively. 
The need for an intuitive, user-friendly interface that bridges 
the communication gap between construction workers and 
robotic assistants is evident. 

This paper provides an insight into a Personal Autonomous 
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Construction Assistant (PACA) designed to address these 
challenges by introducing a multimodal natural language-
based communication framework for human-robot 
interaction. At its core, PACA integrates a Large Language 
Model (LLM) with an Automatic Speech Recognition (ASR) 
system and a Text-to-Speech (TTS) engine, enabling workers 
to interact with robots through spoken commands in their 
native language. The system processes user input, determines 
the appropriate robot action, and generates spoken feedback, 
ensuring a fully bidirectional interaction. Additionally, the 
multimodal capabilities of PACA allow the robot to 
incorporate visual information into its decision-making 
process, further enhancing its ability to operate in dynamic 
construction environments. 

The significance of PACA extends beyond convenience, it 
represents a crucial step to facilitate the integration of robots 
in construction sites. By enabling natural language 
interactions, PACA lowers the barrier to entry for workers 
who may lack formal training in robotics, making robotic 
workforce more accessible and practical in real-world 
construction settings. Furthermore, the ability to support 
multiple languages facilitates the collaboration of 
multinational teams with automated systems, reducing 
potential miscommunication and improving overall site 
efficiency. 

This paper presents an overview of PACA, outlining its 
methodology, implementation, and expected impact on the 
construction industry. The remainder of the paper is 
structured as follows: Section 2 provides an overview of the 
state of the art in construction automation and human-robot 
interaction. Section 3 describes the methodology behind 
PACA’s mmLLM-based workflow, detailing the key 
components of the system. Section 4 discusses the 
implementation specifics, including the robotic platform, 
language models, and multimodal processing capabilities. 
Finally, Section 5 presents conclusions and outlines future 
research directions to further enhance PACA’s capabilities. 

II. STATE OF THE ART 
The adoption of automation in construction has 

significantly gained momentum due to its potential to 
alleviate the persistent issues of labor shortages, low 
productivity, and safety risks prevalent in construction 
environments. Unlike structured manufacturing facilities, 
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construction sites present dynamic, cluttered, and often 
hazardous conditions, complicating the direct adoption of 
robotic systems developed for controlled systems. Despite 
their proven benefits, existing robotic systems in construction 
are limited by their rigidity and inability to effectively adapt 
to unpredictable environments without extensive human 
supervision. The critical factor limiting wider adoption is the 
complexity of human-robot interactions (HRI) within these 
dynamic environments.  

Emerging research underscores the importance of intuitive 
human-robot interaction (HRI) and collaboration (HRC) 
methods as crucial for safe and effective operation in complex 
construction scenarios [7]. Recent studies advocate for the 
integration of natural language processing (NLP) and 
multimodal approaches to facilitate more accessible and user-
friendly robot interactions. For instance, the integration of 
Large Language Models (LLMs) with virtual reality (VR) 
interfaces, as demonstrated by Park et al. [8], has allowed 
construction workers to interact intuitively with robotic 
systems through simple voice commands and gestural inputs, 
effectively reducing cognitive load and communication 
errors.  

The rapid advancements in NLP, particularly the adoption 
of LLMs, have revolutionized human-robot interaction 
capabilities. LLMs can interpret nuanced user instructions, 
translate natural language into structured robot commands, 
and provide human-understandable feedback, significantly 
lowering barriers for workers without specialized robotics 
training. The ROSGPT framework by Koubaa et al. [9] 
exemplifies this potential, enabling robots to interpret and 
execute instructions based on natural speech interactions 
across diverse robotic platforms.  

Furthermore, multimodal AI technologies that fuse voice, 
gesture, and image-based inputs offer enhanced context-
awareness and robust interaction capabilities, especially in 
unstructured and noisy environments typical of construction 
sites. Lai et al. [10] demonstrated a multimodal system 
combining voice commands and gestures with an LLM to 
precisely control robot manipulators, effectively addressing 
the ambiguity and limitations inherent in single-modality 
interfaces. Despite these advances, multimodal AI integration 
remains limited by real-time processing requirements, and the 
susceptibility to errors from LLM hallucinations or 
misinterpretations of user intent.  

Further innovative paradigms such as brainwave-driven 
HRC have emerged, highlighting the importance of adaptive 
and context-aware robotic systems. EEG-based frameworks, 
as proposed by Liu et al. [11], use cognitive load assessments 
to dynamically adjust robotic actions, enhancing worker 
safety and comfort. However, such advanced methods face 
practical limitations, including the intrusiveness of EEG 
sensors, signal processing complexity, and limited practical 
scalability on active construction sites.  

In summary, current research underscores the importance 
of intuitive, adaptable, and robust interfaces for construction 
robotics, emphasizing natural communication modalities and 

multimodal interactions. Despite significant progress, 
existing systems generally lack seamless multilingual 
support, robust real-time decision-making capabilities, and 
comprehensive evaluations in real-world construction 
settings. Addressing these challenges through integrated 
multimodal AI is essential to fully realize the potential of 
robotics within the construction industry, laying the 
groundwork for broader adoption and enhanced collaboration 
between human workers and robotic systems.  

III. METHODOLOGY 
To facilitate human-robot interaction in construction 

environments, PACA follows a multimodal processing 
workflow designed to interpret user commands, generate 
appropriate responses, and execute robotic actions when 
necessary. The system integrates Automatic Speech 
Recognition (ASR), a Large Language Model (LLM), and a 
Text-to-Speech (TTS) engine to facilitate bidirectional 
communication in multiple languages. Additionally, PACA 
leverages visual inputs when required, allowing the robot to 
analyze images as part of its reasoning process. Fig. 1 
provides an overview of the PACA workflow, illustrating the 
key components and data flow within the system. 

 

 

Figure 1.  BPMN diagram with key elements of the process 

A. User Interaction and Multimodal Input 
Efficient interaction between construction workers and 

PACA is facilitated by a multimodal input system that 
captures and interprets both auditory and visual cues. To 
account for the complexity and noise inherent to construction 
environments, PACA does not continuously process audio 
data. Instead, users must explicitly signal the system to initiate 



  

data processing. This signaling method ensures reliability and 
efficiency by avoiding unintended activation or 
misinterpretation of irrelevant environmental audio. Upon 
activation, PACA begins actively processing user input. 

When activated, the system utilizes Automatic Speech 
Recognition (ASR) to convert spoken commands into text, 
enabling further processing. Notably, the system is designed 
to provide responses in the same language as spoken by the 
user. Therefore, if the command is issued in English, PACA 
responds in English, while commands given in other 
supported languages elicit responses in those same languages. 
This multilingual functionality ensures effective 
communication and usability among diverse teams. 

In addition to auditory input, PACA integrates visual data 
as part of its multimodal capabilities. Users can also initiate 
interactions by providing visual inputs, which are processed 
alongside spoken commands when required. This combined 
multimodal input capability significantly enhances context-
awareness and interaction precision. 

After processing inputs through the multimodal Large 
Language Model (mmLLM), PACA communicates its 
understanding, clarifies instructions if needed, or confirms 
tasks through spoken feedback, utilizing a Text-to-Speech 
(TTS) engine. This ensures clear, bidirectional 
communication between the system and the user, critical for 
successful deployment in dynamic and multilingual 
construction sites. 

B. Multimodal LLM and Decision-Making 
The decision-making process within PACA is primarily 

managed by a mmLLM, which serves as the cognitive center 
of the system, responsible for understanding, reasoning, and 
providing coherent responses based on user interactions. At 
its core, the mmLLM utilizes a carefully constructed system 
prompt that provides foundational awareness and context 
regarding the tasks and commands it can execute. This system 
prompt can be tailored to varying degrees of specificity 
depending on the use case or scenario at hand, enabling 
flexibility and adaptability in different construction 
situations. 

Within this prompt, two distinct layers of information are 
clearly delineated. The first part contains background and 
contextual descriptions of general tasks the robot is expected 
to perform, offering a comprehensive overview of the 
environment and typical interactions it might encounter. The 
second portion details Application Programming Interface 
(API)-specific information, explicitly defining the structured 
commands available for robot operation, such as moving to 
predefined locations, interacting physically with objects or 
tools, and executing sensor-driven tasks. This explicit 
separation ensures clarity, allowing the mmLLM to 
appropriately map user requests to precise and executable 
robot commands. 

When a user initiates interaction, spoken inputs captured 
via Automatic Speech Recognition (ASR) and visual inputs 
acquired upon the user's cue are jointly provided to the 
mmLLM. Utilizing its multimodal capabilities, the mmLLM 

processes and interprets these inputs, understanding user 
intent in the context of previous interactions to maintain 
continuity throughout the dialogue. This persistent contextual 
awareness is crucial, ensuring that users are not burdened with 
repeatedly providing the same information and allowing a 
seamless conversational flow, which significantly improves 
usability on active construction sites. 

Based on this multimodal contextual analysis, the mmLLM 
generates coherent and contextually relevant outputs. These 
outputs serve two fundamental roles, first, guiding the 
conversation with the user by providing clear spoken 
responses or queries for further clarification, and second, 
translating user intents into structured, actionable instructions 
ready to be executed by the robot. The structured nature of 
these outputs ensures seamless integration with subsequent 
robot control processes, promoting effective and efficient 
human-robot collaboration in the inherently dynamic 
environment of construction sites. 

C. Robot Command Parsing and Execution 
The final stage in the PACA methodology involves 

translating high-level instructions generated by the mmLLM 
into actionable commands that can be executed by the robot. 
These high-level instructions are inherently abstract and 
structured according to a predefined Application 
Programming Interface (API), clearly outlining the tasks the 
robot is capable of performing, such as navigating to a 
specific location, interacting with objects in the environment, 
or performing targeted inspections. 

This translation from high-level instructions to low-level 
robotic commands is accomplished through a dedicated 
parsing module that directly maps each API-defined 
instruction into corresponding robot-specific actions. This 
translation layer depends significantly on the robotic platform 
and its internal control protocols, so the implementation 
specifics will vary depending on the hardware and control 
middleware used. 

Additionally, the translation mechanism is bidirectional. 
Not only does it convert mmLLM outputs into executable 
robot commands, but it also captures robot-generated cues 
from the physical environment to inform the mmLLM. For 
instance, when the robot reaches a predefined location, 
completes a task, or detects particular conditions in the 
environment, it can trigger corresponding cues or feedback 
signals back to the mmLLM. These environmental cues 
prompt the mmLLM to initiate follow-up interactions with the 
user, ensuring context-aware, dynamic, and adaptive 
communication between the user and PACA. 

IV. IMPLEMENTATION 
To test the developed methodology, PACA was deployed 

on a Boston Dynamics Spot robot equipped with a Spot Arm, 
enabling both mobility and physical interaction with the 
environment. The robot is fitted with an NVIDIA Jetson Orin 
NX 16GB, which serves as the onboard processing unit 
responsible for managing communication between Spot and 



  

the cloud-based OpenAI model. The Jetson module allows 
PACA to send and receive requests to OpenAI servers via an 
internet connection, ensuring efficient processing of natural 
language and multimodal inputs while minimizing response 
latency. 

For audio-based interaction, the system integrates a 
wireless audio receiver to capture the user’s speech and a 
speaker for verbal responses generated through the Text-to-
Speech (TTS) engine. Visual input is processed through an 
RGB camera mounted on the Spot Arm, allowing the robot to 
capture images when requested by the user. Additionally, an 
Insta360 X4 camera is attached to Spot for 360-degree data 
collection, enabling broader environmental awareness. 

The overall hardware configuration of PACA is illustrated 
in Fig. 2. A demonstration of PACA in action can be viewed 
in [12].  

  
(a) (b) 

Figure 2.  (a) General view of the robotic platform PACA, and (b) details 
of the payload used by PACA 

A. User Interaction and Multimodal Input 
To ensure reliable interaction in the challenging conditions 

of a construction site, PACA is designed to be cued into an 
active listening state through a dedicated remote interaction 
device. This device, wirelessly connected to the robot, allows 
the worker to initiate communication via a physical button 
press, ensuring a robust and unambiguous signal. Unlike 
voice-activated wake words or gesture-based cues, which can 
be masked by background noise or environmental clutter, the 
physical button provides a consistent and reliable method for 
engaging with the system. The interaction device includes 
multiple buttons corresponding to different functions, such as 
starting a conversation or commanding the robot to take a 
picture for image-based reasoning. 

To facilitate clear speech recognition in noisy 
environments, the worker’s hardhat is equipped with a built-
in microphone, ensuring that audio commands are captured 
with minimal interference. Speech input is processed using 
OpenAI's whisper-1 model for Automatic Speech 
Recognition (ASR), accurately transcribing the user's 
commands into text before being passed to the mmLLM.  

For verbal feedback, PACA employs OpenAI’s tts-1 model 
for Text-to-Speech (TTS), generating clear and natural-
sounding responses. To minimize latency in real-time 
interactions, the system streams the TTS output as it is 
generated, rather than waiting for the full response to be 
processed before playback. This approach significantly 

reduces response lag, ensuring fluid and natural interaction 
between the user and the robot. 

B. Multimodal LLM and Decision-Making 
PACA utilizes the OpenAI's gpt-4-turbo model, which, at 

the time of this study, is the fastest multimodal model 
available from OpenAI. The mmLLM is responsible for 
processing user commands, analyzing visual inputs when 
necessary, and generating appropriate responses to facilitate 
human-robot collaboration. 

For this case study, the system prompt provided to the 
mmLLM instructs PACA to assist workers by fetching the 
tools they request. If a worker needs a tool to complete a task, 
such as opening a box, they can command PACA to retrieve 
an appropriate tool. Upon receiving the request, PACA is 
instructed by the mmLLM to navigate to a predefined 
inventory location where tools are stored. Once there, PACA 
interacts with the inventory manager, relaying the worker’s 
request. 

At the inventory, the mmLLM guides PACA in prompting 
the inventory manager to present the requested tool. When the 
manager indicates a tool is ready, PACA captures an image 
and processes it through the mmLLM to evaluate whether the 
tool is appropriate for the requested task. If the tool matches 
the worker’s requirements, PACA proceeds to pick it up and 
transport it back to the worker. If the tool is deemed 
unsuitable, PACA will prompt the inventory manager for an 
alternative. 

All of these decision-making processes, from interpreting 
the worker’s request to verifying the suitability of the tool and 
coordinating interactions between multiple users, are handled 
by the mmLLM. By maintaining contextual awareness 
throughout the process, PACA ensures a smooth and efficient 
workflow, reducing the cognitive burden on both the worker 
and the inventory manager. 

C. Robot Command Parsing and Execution 
PACA’s ability to execute physical tasks is facilitated 

through the Boston Dynamics Python API, which enables 
direct control of the robot’s mobility, manipulation, and 
sensing capabilities. The high-level commands generated by 
the mmLLM, such as “go to inventory,” “go to worker's 
location,” “take a picture,” or “pick up tool,” are mapped to 
corresponding low-level API functions that allow the robot to 
perform these actions. 

The translation of commands occurs in a structured 
manner, where each high-level instruction issued by the 
mmLLM is parsed and converted into a sequence of 
executable actions using the Spot API. For instance, when 
PACA receives the command to “go to inventory,” the system 
translates this into a navigation request that utilizes Spot’s 
built-in localization and autonomous movement capabilities. 
Similarly, a “take a picture” command triggers the camera 
module to capture an image, while “pick up tool” translates 
into a series of precise manipulator movements coordinated 
through the API. 

By leveraging the Boston Dynamics Python API, PACA 



  

ensures seamless integration between high-level decision-
making and low-level robotic execution, allowing for reliable 
task performance in dynamic construction environments. 

CONCLUSIONS AND FUTURE WORK 
This study presented PACA, a multimodal language-driven 

robotic assistant designed to facilitate human-robot 
collaboration in construction environments. By integrating a 
mmLLM with a mobile robotic platform, PACA enables 
natural and intuitive communication, allowing workers to 
issue commands using voice input while also incorporating 
visual processing for enhanced decision-making. Through a 
structured methodology, we demonstrated how PACA can 
assist workers in retrieving tools, autonomously navigating a 
construction site, and interacting with inventory personnel to 
fulfill user requests. 

Despite its promising capabilities, the current 
implementation presents certain limitations. One of the 
primary constraints is its reliance on cloud-based services. 
This dependency necessitates a stable internet connection, 
which may not always be feasible in construction 
environments, and also introduces latency in system 
responses. Reducing this dependency by exploring local 
deployment options or leveraging more optimized edge-
computing models could significantly enhance PACA’s 
performance and reliability. 

The current implementation focuses on a straightforward 
tool-fetching task, which, while useful, does not fully explore 
the potential of PACA in more complex scenarios. Future 
work should aim to develop a more advanced use case in 
which the robot not only assists with tool retrieval but also 
performs site inspections, identifies potential safety hazards, 
and provides real-time feedback to workers.  
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