
  

  

Abstract— The construction industry has faced a lagging 
improvement or decline, while other sectors have shown a 
noticeable improvement in productivity. Despite the importance 
of managing productivity, current practices rely heavily on 
manual observation. Such approaches are labor-intensive and 
error-prone. To facilitate the automated productivity 
monitoring of individual workers, this study proposes a 
framework for estimating the labor productivity of workers 
using wearable motion sensors and a deep learning approach. 
The framework consists of two modules, including an activity 
recognition module and a productivity estimation module. In the 
activity recognition module, a long short-term memory (LSTM) 
network is implemented to recognize the activities of workers 
performing a bricklaying task. In the productivity estimation 
module, the recognized activities are discretized using a dynamic 
time warping (DTW) so that the activities can be counted. Based 
on the predefined workflow, the production amount is estimated, 
and finally, the labor productivity of individual workers is 
estimated. 

I. INTRODUCTION 

Understanding the ever-changing behavior of construction 
workers is essential to achieving success in construction 
projects because construction projects are labor-intensive and 
rely heavily on manual tasks. This arouses a strong need to 
understand workers’ activities to improve and ensure the 
safety and productivity of individual workers. To be specific, 
the construction industry has faced a lagging improvement or 
even a decline in productivity, while other industries have 
shown a noticeable improvement in productivity [1]. Even 
though several sections, including multi-family housing and 
industrial construction, showed a notable labor productivity 
growth, these sections accounted for less than 10% of the total 
construction hours in 2012 [2]. Despite the importance of 
managing productivity in construction, current approaches to 
measure and manage productivity rely heavily on manual 
observation, which is labor-intensive and error-prone. 
Moreover, it is challenging to measure the productivity of 
multiple workers at the individual level using those 
approaches. 

To address these challenges and facilitate individual-level 
monitoring of labor productivity, this study proposes a 
framework for estimating the labor productivity of individual 
workers without excessive observation. First, an activity 
recognition model is implemented using an LSTM network, 
which is one of the recurrent neural networks. This model 
classifies a sequence of motion sensor data into a particular 
activity among multiple activity classes of the bricklaying 
task. Next, the recognized activities are discretized using a 
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DTW technique. Because the classification results of the 
LSTM network include duplicated activities depending on 
data preprocessing parameters, the DTW is adopted to exclude 
the duplicated activities by calculating the similarity between 
two time-series data so that the production amount, i.e., the 
number of bricks placed, can be estimated from the 
classification results. Finally, the labor productivity of 
individual workers is estimated based on the production 
amount. With the proposed framework, it is expected that the 
behavior and labor productivity of workers can be monitored 
without excessive manual observation, and finally, such 
information can be used for managerial applications in 
construction projects to improve productivity and optimize the 
relevant resources. 

II. RELATED WORK 

This section reviews motion sensor-based motion and 
activity recognition methods. In general, state-of-the-art 
motion and activity recognition methods use machine learning 
algorithms to recognize motion and activity patterns from the 
sensor data.  

Motion and activity recognition methods were utilized to 
identify various motions and activities using machine learning 
algorithms [3]–[9]. Four activities of construction workers 
were recognized using five types of machine learning 
algorithms [10]. This study utilized a smartphone attached to 
the arm to collect motion sensor data. Likewise, a wristband-
type accelerometer sensor was used to recognize the activities 
of a masonry worker using machine learning algorithms [6], 
[7]. 

Regarding safety, motion and activity recognition can be 
utilized to detect workers’ unsafe postures. A support vector 
machine (SVM) classifier with a supervised motion tensor 
decomposition was developed to identify the awkward 
postures of workers [11]. Similarly, near-miss falls were 
detected using one-class SVM with motion sensor data from 
wearable inertial measurement units (IMUs) [12]. Gait 
stability can be analyzed using IMUs attached to the ankles for 
detecting fall risks [13]–[15]. A deep-learning approach, i.e., 
convolutional long short-term memory (CNN-LSTM), was 
presented to recognize the motions of workers using five IMUs 
[5]. The presented method recognized the motions that can 
cause musculoskeletal disorders, including bending and 
kneeling. 

Motion and activity recognition methods were utilized to 
calculate the productive time duration of workers and analyze 
their productivity [16], [17]. In these studies, productive time 
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was calculated by counting the number of samples classified 
by a machine learning classifier using a smartphone with an 
embedded IMU. Masonry workers were grouped into the 
expert and inexpert groups using a support vector machine 
classifier based on their motions for comparing their 
productivity [18]. 

Although there have been several research efforts that 
show great potential for recognizing the motions and activities 
of workers, a few efforts have been made to automatically 
estimate the labor productivity of individual workers without 
manual observation. Measuring productivity is heavily relied 
on manual observation based on sampling work and idle times. 
However, this approach is labor-intensive, error-prone, and 
unable to provide individual workers’ productivity. Even if 
productivity can be indirectly obtained by measuring work and 
idle times, it does not essentially represent the number of work 
placed by each worker. 

III. METHODOLOGY 

A framework that estimates the labor productivity of 
individual workers using an activity discretization technique is 
developed by 1) recognizing the activities of individual 
workers, 2) estimating the production amount by discretizing 
and counting the activities, and 3) estimating their labor 
productivity. 

A. Activity Recognition Model Implementation 
A bricklaying task is selected as the target task for 

developing the framework as this task involves repetitive 
activities, and a unit of productivity is directly measurable, i.e., 
the number or area of bricks placed per unit hour. Figure 1 
presents a process of the bricklaying task at the level of 
decomposed activities. The bricklaying task includes brick 
flow and mortar flow [19]. Brick flow is a process of handling 
bricks, leveling tools, and tooling brick joints. Mortar flow is 
a process of creating mortar, delivering mortar, checking the 
quality of mortar, and pouring mortar. In this study, the scope 
of predicting labor productivity is limited to the brick flow, 
including lifting, carrying, placing a brick, and tooling. While 
these activities are considered variable activities, other 
activities are considered fixed activities.  

Activity datasets are collected from subjects performing a 
bricklaying task. Target activity classes include walking 
without a brick, lifting, carrying, placing a brick, tooling, and 
idling. As the task mainly involves hand-oriented motions and 
activities, two IMUs located on the hip and hand, depending 
on their handedness, are utilized to collect the sensor data 
because two  IMUs at a certain distance can represent the 
whole body motions [3].  

Each IMU generates a feature set composed of 9 values: 
acceleration (3 values for x, y, and z axes), angular velocity (3 

values for x, y, and z axes), and magnetic field (3 values for x, 
y, z axes), and two feature sets from two IMUs are 
concatenated to form an input vector; thus one input vector 
includes 18 values.  

Once the datasets are generated, an activity recognition 
algorithm is developed by using an LSTM network. The two-
stacked LSTM network developed in [3] is adopted to 
implement the activity recognition model. While the same 
structure is adopted, the scope of recognition is set to the 
classification of the activities related to the bricklaying task as 
shown Fig. 2. Hence, the input vectors are labeled at the 
activity level. Since an LSTM network is capable of learning 
sequential information from data, activities can also be 
effectively recognized by using the LSTM network. 

B. Labor Productivity Estimation 
The activity recognition allows adjacent activities to be 

overlapped with each other when activity sequences are 
generated. Although this technique is important when AI-
based classification is developed to minimize the noisy signal 
and enhance the distinguishability of the data [6], it is not able 
to identify how much relevant work is made directly. Existing 
approaches have tried to calculate productivity indirectly by 
estimating the time duration spent on specific activities. To 
address these challenges, this study adopts a Dynamic Time 
Warping (DTW) technique to discretize the recognized 
activities into separated activities so that the production 
amount can be directly estimated. DTW is a technique that 
finds the similarity between two time-series sequences by 
warping the time axis to align two sequences [20]. In DTW, 
the sequences are stretched or shrunk along the time axis non-
linearly to identify the best match between two sequences. The 
more two sequences have the same patterns, the smaller DTW 
distance is measured. The DTW distance between two 
sequences is determined by using Equation (1). 

𝐷(𝑖, 𝑗) = min{𝐷(𝑖 − 1, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1)} +

	1𝑥! , 𝑦"1                    (1) 
where 𝐷(𝑖, 𝑗) is the DTW distance between two sequences 
𝑥[1: 𝑖] and y[1: 𝑗] [21]. This equation iteratively calculates the 
distance between elements in two sequences until all elements 
are compared.  

To discretize the recognized activities where overlapping 
is allowed, DTW distances within activities in the same 
activity class are calculated. After input vector sequences of 
the recognized activities are linearized, the DTW distances are 
calculated between adjacent sequences if they are classified as 
the same activity. This calculation is repeated until a new class 
is observed. If the calculated DTW distance is smaller than a 
threshold value, the later sequence is excluded from counting 

Figure 1. Two-stacked LSTM network structure [3]. 



  

activities. By repeating this procedure, the recognized 
activities are discretized so that the separated activities can be 
counted. 

In this study, the unit of productivity of the bricklaying is 
defined as the number of bricks placed per unit hour. The 
production amount of each worker is then estimated by 
detecting a lifting activity followed by a placing activity. The 
particular sequential window is considered to detect a placing 
activity that follows a lifting activity because there might be 
other activities between them, such as carrying and idling. 
With these definitions and the estimated production amount, 
the productivity is calculated using Equation (2). 
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where n is the number of workers in the same task and j is the 
number of the estimated work placed by each worker. 

C. Implementation and Result 
The experiments were conducted in an outdoor 

environment similar to an actual jobsite. Fig. 2 presents 
examples of target activities in the experiments. The total 
number of bricks to be laid was 60, and 30 bricks were 
delivered to the bricklaying area at a time. To collect the IMU 
data from the subjects, data collecting devices, as shown in 
Fig. 3, developed by the Robotics and Intelligent Construction 
Automation Laboratory (RICAL) group at the Georgia 
Institute of Technology, were utilized. The devices were 
carried by workers wearing a watch-type device depending on 
their handedness and safety vests with pockets on their lower 
back. The devices are equipped with a wireless 
communication module for Wi-Fi and Bluetooth, a micro 
processing unit, data storage, battery, and an IMU. The IMU 
used in this study consisted of three triaxial sensors, including 
an accelerometer, gyroscope, and magnetometer, which have 
digital resolutions of 0.98 mg, 0.004°/s, and 0.3 μT, 
respectively.  

Two datasets were collected from the subjects who 
performed bricklaying. Subjects performing bricklaying had 
different behavioral patterns because the brick piles were 
placed in different locations, which led to different routines for 
laying bricks. Thus, datasets were separately collected from 
the subjects. The datasets contain 7277 and 8437 data points, 
respectively. The collected data points were labeled with 
timestamps to be manually compared with the recorded videos 
later.  

 
Figure 2.  Examples of target activities; (a) walking without a brick, (b) 
lifting a brick, (c) carrying a brick, (d) placing a brick, (e) tooling, and (f) 

being idle. 

 
Figure 3.  Data collecting device and a safety vest with pockets. 

As a result, the six networks showed accuracies of 88.00% 
and 90.94% on the testing data, respectively. With the 
recognized activities, DTW distances were calculated to 
discretize the activities. The threshold values of DTW 
distances were determined for each classification result. Once 
the DTW distance between two adjacent sequences of 
activities is calculated, the later sequence is excluded if the 
distance is smaller than the threshold value. This indicates two 
sequences represent a single activity and should be counted as 
one repetition. This pairwise comparison is conducted 
throughout the whole dataset. As a result, one-dimensional 
vectors containing the discretized activities were derived. In 
these vectors, the production amount can be estimated by 
detecting lifting activities followed by placing activities. 
Particular sequential windows were allowed between lifting 
and placing activities because other activities, such as 
carrying, unexcluded lifting, or misclassified activities, can 
exist between the activities of interest. With the estimated 
production amount, labor productivity is estimated as shown 
in Table 1. In this study, mortar flow was not considered as 
variable time but fixed time. Spreading mortar should be done 
between each bricklaying. Thus, the average cycle time of 
spreading mortar, which is 2.5 seconds [6], was added to the 
productivity prediction as a constant value. This was done by 
adjusting the trial duration depending on the estimated 
production amount, i.e., the number of bricks placed. As a 
result, 18.18% and 3.1% of productivity estimation errors were 
derived. 
Table 1 Labor productivity of individual workers. 

 

IV. CONCLUSION 
This study proposed a framework for estimating the labor 

productivity of individual workers by using a deep learning-
based activity recognition model and an activity discretization 
technique. The experiments showed that 3.1% to 18.18% of 
estimation errors were achieved by the proposed method. It is 
expected that the labor productivity of individual workers can 
be estimated and monitored without excessive manual 
observation with the framework. 

Future studies will focus on conducting case studies to 

Subject Role 
Original 
Duration 
(minutes) 

Estimated 
Production 

Amount 
(bricks or 
barrows) 

Adjusted 
Duration 
(minutes) 

Productivity 
(bricks/hour 

or 
barrows/hour) 

Ground 
Truth 

(Production 
Amount) 

Ground 
Truth 

(Productivity) 

1 Laying 6.65 27 7.78 208.23 33 254.50 
2 Laying 6.65 26 7.73 201.81 27 208.23 

 



  

validate the practical and technical feasibility of the 
framework. Moreover, further research will be conducted to 
develop decision support methods that allocate workforces 
and optimize cost and duration based on their productivity. 
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