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Abstract— Excavators are widely used for material-handling
applications in unstructured environments, including mining
and construction sites. Workers operating excavators suffer
from prolonged working hours and loads, which can result
in injuries and fatalities. In this paper, we highlight our recent
progress on developing autonomous excavator systems (AES)
for material loading tasks. We present an architecture that
combines perception, planning and control. We fuse multi-
modal perception sensors, including LiDAR and cameras, with
advanced image enhancement, material and texture classifica-
tion, object detection, terrain traversability mapping, motion
planning, and terrain navigation algorithms. AES has been
successfully deployed in a real-world scenario, where two
excavators automatically operate in recycling pipelines and
handle hazardous industrial solid waste material. AES can
achieve 24 hours of continuous operation for the scenario and
has been used by the customer for more than 8, 500 hours.

I. INTRODUCTION

Excavators are considered the most versatile heavy equip-
ment and are frequently used in different applications corre-
sponding to construction, mining, exploration, environmental
restoration, archaeological investigations, emergency rescue,
etc. The size of global market for excavators is predicaed
to grow to 63.14 billion USD by 2026 [7], and a total of
380, 000 new excavators are projected to be sold in 2024 in
China [8].

Currently, excavators are mainly operated by human op-
erators. In addition to facing life-threatening incidents or
injuries, human operators may have to operate excavators
in extremely abominable working conditions, such as work-
ing in remote areas, or even in desert, where conditions
include heavy dust and extreme high or low temperatures [1].
Furthermore, workers also suffer from prolonged working
hours and loads, which can result in fatigue and injuries [2].
Our work deals with developing an autonomous excavator
system (AES) [12]. An unmanned excavation system would
vastly reduce the number of casualties or injuries during
excavation operations. Moreover, such an excavator could
conduct tedious and repetitive tasks for extended hours,
thereby increasing the overall throughput.

Efficiency, robustness, and generalizability are the three
essential requirements in terms of designing an autonomous
excavator [3], [5], [9]. To operate robustly in real world
scenarios, the system needs to operate under an extensive
range of environmental conditions that vary by the terrain
types, weather, lighting conditions etc.
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Fig. 1. Overview of Autonomous Excavator System (AES)

Considering these challenges, we develop a set of algo-
rithms and a robust autonomous excavator system (AES) [4],
[10], [11], [12], [13]. Our system mainly consists of three
main modules: perception, planning, and control together
with a HW sensors layer and an application layer. Specifi-
cally, we mount LiDAR and cameras on the excavator and
employ multi-modal sensor-fusion approaches to perceive
the surroundings and the attributes of the target objects,
including source material piles, dump trucks, dumping area,
impurities, and obstacles. Our perception pipeline follows
the “coarse-to-fine” manner, which can not only reduce the
overall run-time, but also improve the system performance,
enabling prolonged automatic operations without human op-
erator assistance. Based on the perception results, we design
a hierarchical planning module composed of a task level
planning layer and a motion planning layer for both excavator
arm and base movement. For excavator motion control, to
overcome the complex non-linearity, large time delay and



large disturbances during excavation, we use a hierarchical
motion controller.

We have deployed AES in real-world scenarios, where two
excavators automatically operate in recycling pipelines and
handle hazardous industrial solid waste material produced
by various industrial activities. We demonstrate that our
system can be seamlessly integrated within the pipelines for
loading and dumping industrial waste, which are hazardous
for human operators. We have extensively tested AES in
different scenarios. AES can achieve 24 hours of continuous
operation for this waste material loading scenario and has
been used by the customer for more than 8, 500 hours.

II. AES OVERVIEW

A. Hardware System

The robot platform is a hydraulic excavator equipped
with the drive-by-wire system. Currently, we have developed
and tested multiple different sizes of excavators, including
6.5-ton and 7.5-ton compact excavators, 33.5-ton standard
excavators, and 49-ton large excavators. These excavation
platforms offer enormous output power to conduct various
excavation tasks successfully. A control interface through a
CAN bus is used so that the entire unit can be controlled
by software. To ensure safety, a fallback human control
mechanism is implemented in case of an emergency.

To sense the excavator locations and motions, multiple
sensors are installed for AES. We use a real-time kinematic
(RTK) positioning device to provide the location of the
excavator. Inclinometers are used to measure the angles of
different joints of the excavator. A combination of light
detection and ranging (LiDAR) sensors and RGB cameras
collect the environmental information for the perception
module to fuse, process, and analyze the surroundings.

B. Software Architecture

There are three software modules in our system. The
perception module is designed for sensing various obstacles,
modeling the terrain, classifying the material, and locating
the dump truck. Based on the perception results, the planning
module optimizes the motion trajectories for the excava-
tor arms and base. Then the control module transfers the
planning results to the hardware control commands, which
are sent to the excavator to track the desired motion. In
addition, the application layer of the software adjusts the
other modules based on the application.

All modules run simultaneously as nodes under the ROS
framework. In the following, we provide more details on
the perception and planning modules, which are the key
components that enable our system to be deployed in real-
world scenarios.

III. COARSE-TO-FINE PERCEPTION SYSTEM

Our perception module focuses on parsing and under-
standing the surroundings and identifying the target objects
in the unstructured working zones. In specific, to handle
various challenging scenarios, we perform coarse-to-fine

2D/3D perception for LiDAR point clouds and camera RGB
inputs, including:

1) Recognizing the texture of the material and modeling
the shape of the material pile to perform the loading
operation;

2) Detecting the impenetrable portion of the material to
avoid direct contact between it and the excavator’s arm;

3) Identifying the blocking obstacles that need to be
removed;

4) Determining the pose of the trucks for material dump-
ing;

5) Constructing the terrain traversability mapping of the
environments for the excavator to navigate;

6) Enhancing the images through computer vision meth-
ods, such as dedusting, which aims to remove the
influence of dust in image capturing, thus improving
the performance of obstacle identification and texture
recognition.

Our perception module works in a “coarse-to-fine” man-
ner and exploits state-of-the art algorithms like semantic
segmentation, instance segmentation, texture and material
recognition, object detection and dedusting. Taking a stone
detection and segmentation task as an example, an image
enhancement algorithm is first used. Then a texture and
material recognition algorithm is exploited to identify the
stone/puddle/pipe area from the whole image. Next, a 2D
detection and segmentation algorithm is utilized to segment
these objects accurately. Finally, the 2D segmentation and
LiDAR’s depth information are combined to fit the 3D
bounding box for each detected obstacle.

During the excavation operation, especially for handling
stone and soil, dusts often exist in the working area. The
dust can considerably affect the recognition of obstacles,
such as rocks and trucks. To solve this problem, we propose
a deep neural network based dedusting method [10] to
generate clean images from dusty input images in closed-
loop manner. Taking dust image as input, an encoder and
three decoders are used to recover atmospheric light, clean
image and transmission map, simultaneously. The encoder
is used to extract features, where Dense Feature Fusion
strategy and Residual Group are utilized in the encoder
process to obtain better feature representation. In the decoder
process, deconvolutional layers are used to up-sample the
features, then SOS Boosted strategy is employed to enhance
the obtained features. Clean loss and reconstruction loss are
utilized so that the proposed network can converge well
during the training.

IV. HIERARCHICAL PLANNING AND CONTROL SYSTEM

We develop a hierarchical planner architecture for general
excavation applications [11]. As shown in Fig. 2, there
are two levels of task planners plus one level of motion
primitives. From top to bottom, they are high-level task
planner layer, sub-task planners layer and motion primitives
layer. In most scenarios, the excavator alternates between the
motion of its arm to perform excavation operation and the
moving of the base to the desired position. Based on this



Fig. 2. AES Planning Architecture.

characteristic, our planner currently separates the arm move-
ment and base movement into two planning pipelines. The
high-level task planner plays the role of determining which
location the excavator needs to move to and which region of
material the excavator needs to dig. The sub-tasks planners
deals with these types of sub-tasks, namely material removal
sub-tasks (MRSP) for completing the sub-region excavation
efficiently and accurately, and base move sub-tasks (BMSP)
for planning the waypoints for the excavator to move to the
desired locations. Finally, the motion primitive layer uses
advanced motion planning approaches for generating feasible
excavator arm and base motion. Overall, our hierarchical
planning system is closely related to the perception module,
as shown in Fig. 3. The system can account for the terrain
shape as well as the location of obstacles, trucks and other
machinery, explicitly. The system architecture and planner
algorithms are able to generate effective task and motion
plans, which are suitable for various excavation tasks.

Excavator motion control can be challenging because the
hydraulic excavator is a complex non-linear system with a
large time delay and is subject to large disturbances during
excavation. We use a hierarchical motion controller, which
consists of a bucket end-effector following controller, an
excavator base controller and low-level machine specific
look-up tables, which map the command velocity to the
hydraulic valve command.

V. TERRAIN TRAVERSABILITY BASED NAVIGATION

To enable the excavator navigating on complex terrain
environment, we present a terrain traversability mapping
and navigation system for traversability prediction and au-
tonomous navigation. Traversability [6] refers to the capa-
bility of a ground vehicle to reside over a terrain region
under an admissible state wherein it is able to enter given its
current state. Based on the coarse-to-fine perception system,
we use an efficient semantic-geometric fusion method to
extract a traversability map representation, which leverages
the physical and computational constraints of the robot,
including maximum climbing degree, width of the body,
run-time computational budget, etc. A trajectory is planned

Fig. 3. Terrain Traversability Mapping and Navigation System.

based on this map representation, and the control system
ensures that the trajectory is followed in the real-world. In
our approach, we first define critical ranges based on the
maximum climbing degree of the excavator. Whenever the
geometry of the terrain is out of that range, we would assign
bad traversability score on that region. When the terrain score
is in a reasonable range, we fine-tune the weight for geometry
and semantic of the terrain such that the final traversability
map is useful for trajectory planning.

VI. EXPERIMENTAL RESULTS

Our autonomous excavation system has been evaluated
under multiple controlled, real-world testing scenarios. To
thoroughly test the system capability, we set up scenarios in
a closed test field, mimicking common real-world use cases
for an excavator. Based on the successful test results in these
scenarios, we also evaluated the efficiency and robustness of
the system in one of our deployment sites, a waste disposal
factory.

A. Perception Results

Fig. 4 demonstrates an excavator’s process for digging
and then loading truck, which is captured in a real-world
mining operation scenario. As shown in Fig. 4 (Input dust
image), the digging and truck loading process suffer from
heavy dust, and camera images for the working areas and
the excavator are blurry. In such a process, it is difficult for
human eyes to perceive the surrounding and detect objects
due to the existed dust. It could be even harder for computer
vision technologies to perceive. For instance, the rock areas
are difficult to localize even for humans. Therefore, the dust
heavily impedes the automation of this process. As shown
in Fig. 4 (Results), our approach can remove the influence
of dust effectively, and the excavator and rocks areas can be
easily detected after the dedusting process.
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Fig. 4. Dedusting results of real-world captured dust images.

B. Terrain Navigation

Our system is deployed on a actual worksite larger than
200 m2. Our robust mapping and navigation system ensures
that the excavator is able to reach the given goal in all trials,
and maintains the average error under 9 cm overall.

C. AES Deployment for Real-World Scenarios

We have successfully deployed AES to a real-world
scenario, where AES can run continuously for 24 hours
without any human intervention as shown in Fig. 5. For the
waste disposal and recycling applications, the excavator is
assigned to load industrial waste material into a designated
area. Afterward, the material is transferred and recycled. The
material may consist of excessive dust, which is toxic to
human beings. The material pile is not stable and could
collapse, which is another threat to human operators. The
speed of material loading by the excavator must coordinate
with the belt conveyor’s speed and material processing
rate. Hence, there is a high-efficiency requirement for our
autonomous excavator. In addition to satisfying the efficiency
requirement, our autonomous excavator system can handle
both dry and wet material. AES can also function at night. In
this scenario, AES can operate a whole 24-hour day without
any human intervention. The 7.5-ton excavator can handle
as much as 67.1 m3 material per hour, which is closely
equivalent to a human operator’s performance. Furthermore,
AES performs consistently over time, while the performance
of human operators may vary. Since the deployment, AES
system has been used by the customer for more than 8, 500
hours.

VII. CONCLUSION

In conclusion, we highlight our recent progress on devel-
oping autonomous excavator system and deploying AES to
real-world. In future, we plan to extend the system to han-
dling more diverse scenarios, such as excavating fragmented
rocks and operating in challenging weather conditions. We

Fig. 5. Robust and non-stop operation of AES in a real-world waste
disposal scenario.

also would like to develop approaches for sensing and mod-
eling material physical properties and excavation resistance
force for autonomous excavation.
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