## Autonomous Dozer Sand Grading Under Localization Uncertainties

# Yakov Miron<sup>1,2</sup>, Yuval Goldfracht<sup>1</sup>, Chana Ross<sup>1</sup>, Dotan Di Castro<sup>1</sup>, Itzik Klein<sup>2</sup>

<sup>1</sup>Bosch Centre for AI (BCAI), Haifa, Israel

<sup>2</sup>The Autonomous Navigation and Sensor Fusion Lab, The Hatter Department of Marine Technologies, University of Haifa

### Introduction

- Given A Dumper, A Bulldozer and some sandpiles, we seek to increase some initial surface by some height to a desired height, with minimal time.
- Goal: Optimally perform the grading task: not leaving ungraded sand; minimal time

Illustration of the task definition







#### **Problem Formulation and Hypotheses**



| 27C | 1000 C |     | <br>- |      |     | <br>0 | 20   | -+0 | 00 |
|-----|-----------------------------------------------------------------------------------------------------------------|-----|-------|------|-----|-------|------|-----|----|
|     | × [¢                                                                                                            | CM] |       | X [0 | CM] |       | X [0 |     |    |

In all three figures, the number of arrows represent the number of grading legs it took to complete the episode.

This proved our first hypothesis in simulation that a agent\_1 will suffer degraded performance at the presence of localization noise.

Hypothesis: Re-training an Agent under some conditions will increase robustness under localization errors.



#### **Algorithm Overview**



Simulation of the performance of agent1; agent2 under increasing noise levels. (a-b) When the noise level increased, so did the (a) time it took agent1 to complete the task increased rapidly. (b) the volume that remained uncleared, meaning sub-optimal performance under uncertainties. (c-d) As the noise level increases, the (c) time it took agent2 to complete the task increased in a moderate rate, while the (d) total uncleared volume did not increase, meaning that agent2 is more robust to noise.

#### **Results Real**

Experiment setup





Here is an example of decisions, representing way-points.

Green star is the decision made by agent2 where the sandpile will be graded, while the green square was the desired waypoint for agent1, where in this case the sand will be unattended.





| Accurate Decisions  | $agent_1$ | $agent_2$ |
|---------------------|-----------|-----------|
| Noise-Less          | 96%       | 98%       |
| Sensor Fusion Noise | 50%       | 90%       |
| Extreme Noise       | 52%       | 56%       |

The percentage of successful decisions made by each of the two agents in three scenarios (presented as the mean values of successful decisions taken by the agents out of 50 roll-outs). As expected, without noise, both agents exhibit the same level of performance, i.e., their degree of successful decision-making was equal. In the presence of noise, though, agent2 made a successful decision in 90% of the cases, while agent1 managed to do so only in 50% of them.

| Episode Length [sec] | $agent_1$ | $agent_2$ |
|----------------------|-----------|-----------|
| Noise-Less           | 44        | 45        |
| Sensor Fusion Noise  | diverged  | 105       |
| Extreme Noise        | diverged  | 156       |

Results comparing two agents in three scenarios (all results are in seconds). As expected, without noise, the performance of both agents was on par. In the presence of noise, though, agent2 managed to complete the task in all three cases, while agent1 diverged early on in the episode.