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Abstract— In this paper, we propose a solution for graph-
based global robot simultaneous localization and mapping
(SLAM) using architectural plans. Before the start of the robot
operation, the previously available architectural plan of the
building is converted into our proposed architectural graph
(A-Graph). When the robot starts its operation, it uses its
onboard LIDAR and odometry to carry out an online SLAM
relying on our situational graph (S-Graph), which includes
both, a representation of the environment with multiple levels
of abstractions, such as walls or rooms and their relationships,
as well as the robot poses with their associated keyframes. Our
novel graph-to-graph matching method is used to relate the
aforementioned S-Graph and A-Graph, which are aligned and
merged, resulting in our novel informed Situational Graph (iS-
Graph). Our iS-Graph not only provides graph-based global
robot localization, but it extends the graph-based SLAM ca-
pabilities of the S-Graph by incorporating into it the prior
knowledge of the environment existing in the architectural plan.

I. INTRODUCTION

The construction industry is increasingly using mobile
robots, which offer numerous potential benefits. These robots
can significantly reduce costs by regularly inspecting on-
going construction sites and monitoring progress. However,
most robots used in construction are either teleoperated or
operate semi-autonomously, primarily due to the percep-
tion challenges associated with the ever-changing nature of
construction sites. To enable fully autonomous operation, it
would be advantageous for these robots to possess compre-
hensive prior knowledge of the construction site’s geometry.
By combining this prior knowledge with sensor readings
during real-time operation, these robots could achieve robust
and accurate global localization within construction sites.

Digital architectural plans, such as Building Information
Modelling (BIM) [1], provide a means of capturing and
communicating information about a construction site and
incorporating it as prior knowledge about the scene. Works
such as [2]–[4] have addressed the problem of extracting
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relevant structural knowledge from BIM and using it for real-
time robot localization. However, these methods only extract
geometric information from the BIM and do not leverage
the topological and relational information also available in
it, which limits the robustness and accuracy in complex and
changing construction sites.

To tackle this problem, we present a novel approach to
localize robots leveraging not only geometry but also higher-
level hierarchical information from architectural plans. We
present in this paper how to model the BIM information
in the form of a graph that we denote as Architectural
Graph (A-Graph), and then match and merge with the online
Situational Graph (S-Graph) [5], [6] that the robot builds as
it navigates the environment. As a key aspect, translating
low-level geometry into high-level features in both graphs is
what allows a robust matching between such different inputs.

Our method can be divided into three main stages. In the
first one, an A-Graph is created for a given environment
with nodes representing the semantic features available in a
BIM model, specifically, wall-surfaces, doors, and rooms as
the graph nodes, and edges containing the relevant relational
information such as two wall surfaces comprising a wall,
four wall surfaces connecting room and rooms connected
through doors. In the second stage, running in real-time
onboard the robot, a S-Graph is estimated using 3D LiDAR
measurements. The nodes of our S-Graph correspond to
semantics such as wall surfaces and rooms, and the edges
correspond to constraints between these wall surfaces and the
relevant room nodes. Finally, to localize the robot within this
environment, a graph-matching algorithm is proposed uti-
lizing hierarchical information from both graphs to provide
the best match candidates finally resulting in informed (iS-
Graphs) that fuses the information of both. This last graph
will be the one used for global localization.

II. SYSTEM OVERVIEW

Fig. 1 shows an overview of the proposed approach. Firstly
the BIM information is extracted for a given environment to
create the two-layered Architectural Graphs (Section. III)
in an offline manner, with all the elements extracted in
the BIM frame of reference B. As the robot navigates
within the given environment, an online Situational Graph
(Section. II-A) is estimated by the robot in the map frame of
reference M . In parallel, we run our the Graph Matching
method (Section. IV) to provide match candidates between
the existing A-Graphs and the current S-Graph. Finally, after
retrieving the best match candidate, our Graph Merging



Fig. 1: Overview of our approach. We generate offline an Architectural Graph (A-Graph) from a BIM model. A robot
estimates online a Situational Graph (S-Graph) from its sensors. We do graph matching between the two, align them, and
merge their information. This generates the final iS-Graphs, which is utilized by the robot to be localized with respect to
the BIM.

(Section. V) provides the merged iS-Graph utilized for
the global localization with respect to the BIM frame of
reference B.

A. Situational Graphs (S-Graphs)

S-Graphs are four-layered optimizable hierarchical graphs
built online using 3D LiDAR measurements. The full details
of the S-Graphs we use in this work can be found in [5],
[6]. In brief, their four layers can be summarized as:

Keyframes Layer. It consists of the robot poses factored
as MxRi

∈ SE(3) nodes in the map frame M with pairwise
odometry measurements constraining them.

Walls Layer. It consists of the planar wall-surfaces Mπi ∈
R3 extracted from the 3D LiDAR measurements and factored
using minimal plane parameterization. The planes observed
by their respective keyframes are factored using pose-plane
constraints.

Rooms Layer: It consists of two-wall rooms Mγi ∈ R2

or four-wall rooms Mρi ∈ R2, each constraining either two
or four detected wall-surfaces respectively.

Floors Layer: It consists of a floor node Mξi ∈ R2 posi-
tioned at the center of the current floor level and constraining
all the rooms present at that floor level.

III. ARCHITECTURAL GRAPHS (A-GRAPHS)

We extract relevant information from BIM models into
two-layered optimizable graphs denoted as A-Graphs. In
the lowest-level layer, we will model the geometry of the
walls, and in the highest level the rooms. Room-to-wall
constraints connect the two layers and neighboring rooms are
constrained by doorways. The specific formulation is detailed
below.

A-Walls Layer. This layer extracts all the information
about the walls and wall surfaces from the BIM and connects
them with appropriate wall-to-wall-surface edges.

Wall-Surfaces: Wall-surfaces are planar entities Bπ ex-
tracted in the BIM frame of reference B. All the wall-
surfaces are converted to their Closest Point (CP) represen-

tation, as in [6]. Wall-surface normals with their component
Bnx greater than Bny are classified as x-wall-surfaces, and
wall surfaces whose normal component Bny is greater than
the normal component Bnx are defined as y-wall-surfaces.
These are initialized in the graph as Bπ = [Bϕ,Bθ,Bd],
where Bϕ and Bθ stand for the azimuth and elevation of the
plane in frame B and Bd is the perpendicular distance in B.

Walls: We introduce a novel semantic entity with respect
to [6] in the form of a Wall ω ∈ R3, consisting of two pla-
nar wall-surfaces. Two opposed planar wall-surface entities
either in x-direction or y-direction with similar perpendicular
distance Bd can be classified as a part of a single wall
entity. The wall center Bωxi for two opposed x-direction
wall-surfaces is computed as:

Bwxi =
1
2

[
|Bdx1 | · Bnx1 − |Bdx1 | · Bnx2

]
+ |Bdx2 | · Bnx2

Bωxi =
Bwxi +

[
Bsi − [ Bsi · Bŵxi ] · ˆBwxi

]
(1)

where Bsi ∈ R3 is the starting point for a given BIM wall
and n and d are the plane normals and distance. For Eq. III
to hold true, all plane normals are converted to point away
from the BIM frame of reference as in [6]. The wall center
along with it wall-surfaces is factored in the graph as:

cω(
Bωi,

[
Bπx1 ,

Bπx1 ,
Bsi])

=

K∑
i=1

∥Bω̂i − f(Bπ̃x1
,Bπ̃x1

,Bsi)∥2Λω̃i,t
(2)

Where f(Bπ̃x1
,Bπ̃x1

,Bsi) is the function mapping the
wall center using the wall-surfaces and its starting point
following Eq. III. Wall factors add an additional layer of
structural consistency to the graph. A Wall center for opposed
planes in y-direction is computed following Eq. III.

A-Rooms Layer. The second layer of the graph extracts
all the information about the rooms along with the door-ways



interconnecting the rooms.
Rooms: We use the similar concept of a four-wall room

Bρ ∈ R2 as presented in [6], where each room comprises the
four-wall surfaces extracted in the first layer of the graph.

Door-Ways: We incorporate an additional entity in the
graph called door-ways interconnecting the room nodes,
easily available from BIM. The position of a door-way node
BD ∈ R3 is directly extracted from BIM in the frame of
reference B. Using the semantic information from BIM of
the rooms connected by a given door-way, the door-way-to-
rooms factor can be formulated as:

cD(Bρ1,
Bρ2,

BDi) =

∥ f(Bρ̂1,
ρ1D̂i)− f(Bρ̂2,

ρ2D̂i)∥ (3)

Where Bρ1 and Bρ2 are the four-wall rooms connected
to the door-way BDi. ρ1Di and ρ2Di are the positions the
door-way nodes estimated with respect to rooms Bρ1 and
Bρ2.

IV. GRAPH MATCHING

Our second contribution to this paper is a novel approach
to graph matching in which we match an architectural A-
graph, Ga, and a S-Graph, Gs. We compare and match the
room (ρ) entities and for each room entity its corresponding
wall-surfaces (π), extracted from both graphs. The corre-
spondences form a bipartite graph connecting the nodes of
some parts of Ga with all, or almost all nodes, in Gs, at the
rooms and walls layers. Gs is built incrementally as the robot
navigates the environment, the graph matching is run after
every map update until a successful match is obtained. A
schema of the entire graph-matching process is described in
Fig. 2.

Notation. Let V be any set of nodes, with V a and V s the
sets of nodes in the A-Graph and the S-Graph respectively.
Let m = (va, vs) : va ∈ Va, vs ∈ Vs, and M be any set of
m such as M = {m1,m2, ...,mn}. Let M be any set of
M such as M = {M1,M2, ...,Mn}. Local candidates are
M including m referring to a small part of the input graphs.
Global candidates are M including m referring to the entire
input graphs.

V. GRAPH MERGING

Our global state s at time T , before graph merging,
contains all the nodes of the A-Graph, generated offline, as
well as the current nodes estimated online by the S-Graph

s = [MxR1
, . . . , MxRT

,
Mπ1, . . . , MπP ,

Bπ1, . . . , BπQ,
Mρ1, . . . , MρS ,

Bρ1, . . . , BρR (4)
Mγ1, . . . , MγG,

Mξ1, . . . , MξE ,
Bω1, . . . , BωW , BD1, . . . , BDD,
BxM ]⊤,

where BxM is the estimated transformation between the map
frame M of the S-Graph and the BIM frame B of the A-
Graph, which is set to identity before graph merging. The

graph matching method from Section. IV provides match
candidates between the room nodes and the wall-surface
nodes of the S-Graph and the A-Graph. To efficiently merge
the two graphs to generate the iS-Graph, we introduce room-
to-room constraints as well as a wall-surface-to-wall-surface
constraints between the matched candidates. The room-to-
room constraint is defined as

cρ(
Bρ1,

Mρ2) = ∥ Bρ̂1 −
M ρ̂2∥2Λρ̃1,2

, (5)

where Bρ1 is the room node in the A-Graph and Mρ2

is the corresponding room node in S-Graph. Similarly, for
all correspondences between wall-surface candidates, the
constraint is formulated as

cπ(
Bπ1,

Mπ2) = ∥ Bπ1 − Mπ2∥2Λπ̃1,2
, (6)

where Bπ1 and Mπ2 are the wall-surfaces in the A-Graph
and the S-Graph.

With the constraints between the two graphs, BxM can be
estimated and all the robot poses, the wall-surfaces, rooms,
and floors of the S-Graph can be referred accurately with
respect to the BIM frame of reference B of the A-Graph,
resulting in the final improved situational graph iS-Graph. In
this manner the robot is localized with respect to the global
reference of the architectural plan. Our approach thus can
perform global localization exploiting the hierarchical high-
level information in the environment without the need for
appearance-based loop closure constraints at keyframe level,
which are more variable.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We validated our proposed approach in multiple simulated
and real-world construction environments. In all experiments,
we generated A-Graphs from various building models that
were created in Autodesk Revit. The Boston Dynamics Spot
robot, equipped with a Velodyne VLP-16 3D LiDAR, was
teleoperated for data collection. We compared our approach
to two 2D LiDAR-based localization algorithms (AMCL [7]
and Cartographer [8]) and one 3D LiDAR-based localization
(UKFL [9]) algorithm. In simulated datasets we measured the
Absolute Pose Error (APE) [10] with respect to the ground
truth, while in real-world due to the absence of ground truth
pose information, we compare the point cloud RMSE of the
generated map with the available ground truth map from
BIM. The proposed methodology was implemented in C++,
and the experiments were validated on an Intel i9 16-core
workstation.

B. Results and Discussion

Simulated Datasets. Table. I presents the APE of our
proposed iS-Graphs and state-of-the LiDAR-based localiza-
tion algorithms for six simulated datasets. Each simulated
dataset represents a single floor level of a given construction
environment with varying configurations of wall-surfaces and
rooms. Given the output from 2D LiDAR algorithms, the



Fig. 2: Graph matching schema. a) Downwards and at each level, different combinations of matches are proposed and
selected by their geometrical affinity either at the same level or with the associated upper-level pair. b) The match graph is
traversed upwards while combined with same-level nodes to define all-level match candidates. c) The lowest-level pairs of
every candidate are scored in global affinity. That score is clustered to find symmetries in the best cluster.

TABLE II: Point cloud RMSE [m] for our real-world dataset.
Best results are boldfaced. ‘−’ stands for localization failure.

Method Alignment Error ↓
Datasets

D1 D2 D3

AMCL [7] - 0.90 0.98
UKFL [9] - 0.86 0.69
Cartographer [8] - 0.58 0.64
iS-Graphs (ours) 0.17 0.20 0.21

APE of all the algorithms is computed in 2D (x, y, θ).
Table. I shows that our iS-Graphs shows higher robustness
against localization failure and outperforms all the localiza-
tion baselines using both 2D and 3D LiDARs.

Real-World Datasets. Table. II presents the point cloud
RMSE for three different construction environments, where
our iS-Graphs is able to localize the robot correctly while
providing a more accurate 3D map of the environment as
compared to the ground truth. Because of noisy LiDAR
measurements and the clutter in a real construction environ-
ment traditional approaches to localization fail to localize the
robot (see D1 in Table. II). Since our approach relies only
on high-level entities like wall-surfaces and rooms and their
topological relationship instead of directly relying on low-
level LiDAR measurements, it is more robust to noise and
clutter in the environment than the baselines.

VII. CONCLUSION

In this paper, we presented a novel method for global
robot localization utilizing prior information from architec-
tural plans. We embeded the architectural data from BIM
models into optimizable graphs called Architectural Graphs
(A-Graphs). Using Situational Graphs (S-Graphs) estimated
by a robot as it navigates its environment, we present a novel
graph matching strategy to match the A-Graphs with the S-
Graphs and we also present a graph merging strategy to
fuse both graphs. The result of the fusion is an informed

TABLE I: Absolute Pose Error (APE) [m] for several
LiDAR-based localization baselines and our iS-Graphs
Datasets have been recorded in simulated environments. ‘−’
stands for localization failure.

Method APE [m] ↓
Datasets

D1 D2 D3 D4 D5 D6

AMCL [7] 2.04 1.71 2.03 2.01 - -
UKFL [9] 0.97 0.78 - 0.74 0.70 0.88

Cartographer [8] 0.10 0.16 0.12 - 0.13 -
iS-Graphs (ours) 0.08 0.01 0.02 0.04 0.09 0.12

iS-Graph, which enables the robot to localize itself within
the architectural plan for the given environment.
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