
1

Real-time Localization and Mapping leveraging Hierarchical
Representations

Hriday Bavle1, Jose Luis Sanchez-Lopez1, Muhammad Shaheer1,
Javier Civera2 and Holger Voos1

Abstract—In this paper, we present an evolved version of the
Situational Graphs, which jointly models in a single optimizable
factor graph a SLAM graph, as a set of robot keyframes,
containing its associated measurements and robot poses, and a
3D scene graph, as a high-level representation of the environment
that encodes its different geometric elements with semantic
attributes and the relational information between those elements.

Our proposed S-Graphs+ is a novel four-layered factor graph
that includes: (1) a keyframes layer with robot pose estimates,
(2) a walls layer representing wall surfaces, (3) a rooms layer
encompassing sets of wall planes, and (4) a floors layer gathering
the rooms within a given floor level. The above graph is
optimized in real-time to obtain a robust and accurate estimate
of the robot’s pose and its map, simultaneously constructing
and leveraging the high-level information of the environment. To
extract this high-level information, we present novel room and
floor segmentation algorithms utilizing the mapped wall planes
and free-space clusters.

We tested S-Graphs+ on multiple datasets, including simula-
tions of distinct indoor environments from real data captured
over several construction sites and office environments, and on a
real public dataset of indoor office environments. S-Graphs+ out-
performs relevant baselines in the majority of the datasets while
extending the robot situational awareness by a four-layered scene
model. Project web: https://snt-arg.github.io/s graphs docker/

I. INTRODUCTION

ROBOTS require a deep understanding of the situation
for their autonomous and intelligent operations. Works

like [1], [2], [3] generate 3D scene graphs modeling the
environment with high-level semantic abstractions (such as
chairs, tables, or walls) and their relationships (such as a set
of walls forming a room or a corridor). While providing a
rich understanding of the scene, they rely on separate SLAM
methods, such as [4], [5], [6], that previously estimate the
robot’s pose and its map using metric/semantic representations
without exploiting this hierarchical high-level information of
the environment. Thus, in general, 3D scene graphs and their
underlying SLAM graphs are not completely coupled.
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Fig. 1: S-Graph+ built using a legged robot (circled in black)
as it navigates a real construction site consisting of four
adjacent houses. (a) 3D view of the four-layered hierarchical
optimizable graph. The zoomed-in image shows a partial view
of the free-space clusters utilized for room segmentation. (b)
Top view of the graph.

Our previous work S-Graphs [7] bridges this gap proposing
for the first time a tightly coupled geometric LiDAR SLAM
with 3D scene graphs, demonstrating state-of-the-art metrics.
However, it came with multiple limitations that we overcome
in this work with our new S-Graphs+ (Fig. 1), with updated
front-end and back-end relying on 3D LiDAR measurements.
Our main contributions are summarized as:

• A novel real-time factor graph organized in four hierar-
chical layers.

• A real-time extraction of high-level information using the
novel room and floor segmentation algorithms.

• A thorough experimental evaluation in different simulated
and real construction/office environments as well as soft-
ware release for the research community.

II. RELATED WORKS

A. SLAM and Scene Graphs
The literature on LiDAR SLAM is huge, and there are

several well-known geometric approaches like LOAM [4] and

https://snt-arg.github.io/s_graphs_docker/
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Fig. 2: S-Graphs+ overview. Our inputs are the 3D LiDAR
measurements and robot odometry, which are pre-filtered and
processed in the front-end to extract wall planes, rooms, floor,
and loop closures. Note the four-layered S-Graph+, whose
parameters are jointly optimized in the back-end.

its variants [5], [8], [9], and also semantic ones like LeGO-
LOAM [6], SegMap [10] that provide robust and accurate
localization and 3D maps of the environments. While ge-
ometric SLAM lacks meaning in the representation of the
environments, causing failures in aliased environments and
limitations for high-level tasks or human-robot interaction, its
semantic SLAM counterparts lack in most occasions geometric
accuracy and robustness, due to wrong matches between
the semantic elements and the limited relational constraints
between them.

Scene graphs [2], [3] on the other hand, model scenes as
structured representations, specifically in the form of a graph
comprising objects, their attributes, and the inter-relationships
among them. Though promising in terms of scene represen-
tation and higher-level understanding, a major drawback of
these models is that they do not tightly couple the estimate of
the scene graph with the SLAM state.

B. Room Segmentation

In the literature, different room segmentation techniques
are presented over pre-generated maps using 3D LiDARs
[11]–[13]. Their performance is, however, degraded in the
presence of clutter. Authors in [3] present a real-time room
segmentation approach to classifying different places into
rooms but compared to our approach they do not utilize the
walls in the environment to efficiently represent the rooms.

III. OVERVIEW

The architecture of S-Graphs+ is illustrated in Fig. 2. Its
pipeline can be divided into six modules, and its estimates are
referred to four frames: the LiDAR frame Lt, the robot frame
Rt, the odometry frame O, and the map frame M . Lt and Rt

are rigidly attached to the robot and then depend on the time
instant t, while O and M are fixed.

IV. FRONT-END

A. Wall Extraction

We use sequential RANSAC to detect and initialize wall
planes. We refer the reader to [14] for further details.

B. Room Segmentation

It consists of two steps and the output is the parameters of
four-wall and two-wall rooms.

Free-Space Clustering. Our free-space clustering algo-
rithm divides the free-space graph of a scene into several
clusters that should correspond to the rooms of that scene.
Given a set of robot poses and a Euclidean Signed Distance
Field (ESDF) representation [15] for these poses, we generate
a sparsely connected graph G of free spaces using [16].

Given the graph G, we cluster it into different free-space
regions as follows. We create a filtered graph Gf removing the
vertices vd whose distance to obstacles is less than a given
threshold tλ. We also remove from Gf all the edges ed that
are connected to the node set vd. We then run the connected
components method on Gf to divide it into several connected
sub-graphs Gfi , i ∈ {1, . . . , N}.

Room Extraction. Room extraction uses the free-space
clusters Gfi and the wall planes from a keyframe at time
t to detect different room configurations. Wall planes are
represented in the map frame, where each plane is defined
by its normal and its distance to the origin. All extracted
wall planes are first categorized as x-direction planes for
which their highest normal component is nx, and similarly y-
direction planes. x-planes and y-planes are further classified
into planes with positive and negative normal directions in x
and y respectively. Given each sub-category of the wall planes,
our room extraction method first checks the L2 norm between
the 3D points of each plane and the vertices of each cluster
Gfi , to find the set of walls lying closer to each specific cluster.
If four plane candidates are found around the cluster we create
a four-wall room center, and a two-wall room center is created
using two-plane candidates. [14] presents room segmentation
in detail.

C. Floor Segmentation

The floor segmentation module extracts the widest wall
planes within the current explored floor level by the robot
which can then be used to calculate the center of the current
floor level. Our floor segmentation utilizes the information
from all mapped walls to create a sub-category of wall planes
as described in the room segmentation (Sec. IV-B). After
receiving a complete plane set it computes the widths between
all x-direction and y-direction planes. The wall plane set
with the largest wx and wy are the chosen candidates for
computing the center of the current floor level. [14] presents
floor segmentation in detail.

V. BACK-END

The back-end is responsible for creating and optimizing the
four-layered S-Graph+ summing the individual cost functions
of each layer, explained in detail as follows.

Keyframes. This layer creates a factor node with the robot
keyframe pose at time t in the map frame M . The pose
nodes are constrained by pairwise odometry readings between
consecutive poses as in [7].

Walls. This layer creates the planar factor nodes for the
wall planes extracted by the wall segmentation (Sec. IV-A)
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and constrain them with their corresponding keyframes using
pose-plane constraints as in [7].

Rooms. The rooms layer receives the extracted room can-
didates and their corresponding wall planes from the room
segmentation module (Sec. IV-B) to create appropriate con-
straints between them.

Four-Wall Rooms: We propose a novel edge formulation
between the detected room node (generated from its center)
and its four mapped wall planes, where the total cost function
to minimize the room node and its plane set can be given as:

cρ(
Mρ,

[
Mπxai

,Mπxbi
,Mπyai

,Mπybi

]
)

=

T,S∑
t=1,i=1

∥M ρ̂i − f(M π̃xai
,M π̃xbi

,M π̃yai
,M π̃ybi

)∥2Λρ̃i,t

(1)

Where M ρ̂i is the estimated four-wall room center obtained
from Sec. IV-B and f(M π̃xai

,M π̃xbi
,M π̃yai

,M π̃ybi
) is the

function mapping the four wall planes estimated to a four-wall
room center.

Two-Wall Rooms: We propose a similar cost function to
minimize room nodes and their two corresponding wall planes
as follows:

cκ(
Mκi,

[
Mπxa1

,Mπxb1
,Mci

]
)

=

T,K∑
t=1,i=1

∥M κ̂i − f(M π̃xa1
,M π̃xb1

,Mci)∥2Λκ̃i,t
(2)

Mci is the cluster center, which is kept constant during
the optimization, and M κ̂i is the estimated two-wall room
center in x direction obtained from Sec. IV-B. Duplicate
wall plane nodes identified during the four-wall or two-wall
room segmentation are constrained by a factor minimizing the
difference between their respective parameters.

Floors. The floor node consists of the center of the current
floor level calculated from the floor segmentation (Sec. IV-C).
We add the relative position cost function between the floor
node and all the mapped four-wall and two-wall rooms node
at that floor level.

VI. EXPERIMENTAL RESULTS

A. Methodology

S-Graphs+ is built on top of its baseline S-Graphs [7] and
is validated on simulated and real-world scenarios, comparing
it against several state-of-the-art LiDAR SLAM frameworks
and its baseline. The experiments cover a wide array of scenes,
from construction sites to office spaces, and use data recorded
in-house and from the public TIERS dataset.

Simulated Data. We conduct a total of five simulated
experiments in indoor environments with different room con-
figurations. Due to absence of odometry from robot encoders,
in all simulated experiments the odometry is estimated only
from LiDAR measurements. For a fair validation, S-Graphs+
is run using two different odometry inputs, specifically VGICP

TABLE I: Absolute Trajectory Error (ATE) [m], of S-Graph+
and relevant baselines on simulated data. Best results are bold-
faced, second best are underlined. ‘-’ refers to an unsuccessful
run.

Method Dataset (m x 10−2)

Mapping Odometry C1F0 C1F2 SE1 SE2 SE3

HDL-SLAM [9] VGICP [17] 9.42 2.12 2.46 10.6 6.23
ALOAM [4] ALOAM 9.90 8.70 15.7 40.2 19.7
MLOAM [8] MLOAM - 50.2 66.1 - 15.7
FLOAM [5] FLOAM 11.7 14.5 14.6 30.5 27.6
LeGO-LOAM [6] LeGO-LOAM - - - - 74.1
S-Graphs [7] VGICP 5.09 2.57 2.18 9.10 3.86

S-Graphs+ VGICP 4.47 1.75 1.91 9.31 3.37
S-Graphs+ FLOAM 5.94 11.7 5.72 9.60 19.9

[17] and FLOAM [5]. Tab. I showcases the ATE for the
simulated experiments. We outperform S-Graphs [7] thanks to
the new plane segmentation module, new rooms factors and
the new room segmentation algorithm. Experiments are sorted
by scene size, from left to right the scene size being larger.
Note how the baseline errors tend to grow for larger scenes,
and how our S-Graphs+ achieves bigger error reductions for
larger scenes due to its better representation.

In-House Dataset. In all our in-house data we utilize the
robot encoders for estimating the odometry. The experiments
from C1F1-C4F1 are performed over construction sites with
different room layouts. LC1 consists of an office environment
in which the robot traverses back and forth a long corridor.

Tab. IV presents the point cloud RMSE obtained by com-
paring the generated 3D maps against the 3D maps from the
building plans. As it can be observed in the table, S-Graphs+
is more accurate than the baseline in most of the cases. For
experiment C4F0, Fig. 3 shows a top view of the final maps
estimated by S-Graphs+ and three other baselines. Observe the
higher degree of accuracy and cleaner map elements in the S-
Graphs+ case. Additionally, Tab. III provides a comprehensive
overview of the computation time required by each module
within S-Graphs+, as can be seen, even for experiments with
approximately 17 mins (C2F2), all the modules of S-Graphs+
are able to maintain real-time performance.

TIERS LiDARs dataset. We also validate S-Graphs+ on

(a) S-Graphs+ (b) HDL-SLAM

(c) ALOAM (d) FLOAM

Fig. 3: Maps by S-Graphs+ and baselines, in-house seq. C4F0.
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TABLE IV: Point cloud RMSE [m] for our in-house real
sequences. All methods use odometry from robot encoders.
Best results are boldfaced, second best underlined. ‘-’ refers
to an unsuccessful run.

Dataset (m x 10−2)

Method Point Cloud RMSE

Mapping C1F1 C1F2 C2F0 C2F1 C2F2 C3F1 C3F2

HDL-SLAM [9] 33.5 19.8 18.5 21.1 19.5 22.9 19.4
ALOAM [4] 52.6 33.6 34.1 45.1 29.9 36.5 43.4
MLOAM [8] 45.0 27.6 40.6 32.4 23.6 - -
FLOAM [5] 68.5 39.2 40.2 55.5 39.5 58.3 38.8
LeGO-LOAM [6] - - 39.2 45.5 - 52.9 50.3
S-Graphs [7] 33.1 18.9 18.4 21.8 17.6 22.8 22.6
S-Graphs+ 32.9 18.9 16.9 18.9 17.6 22.3 18.7

TABLE II: Absolute Trajectory Error (ATE) [m], of S-
Graphs+ and relevant baselines on the TIERS dataset [18].
Best results boldfaced, second best underlined.

Method Dataset (m x 10−2)

Mapping Odometry T6 T7 T8 T10 T11

HDL-SLAM [9] VGICP [17] 25.6 27.3 31.0 148.9 287.1
ALOAM [4] ALOAM 25.7 27.0 34.6 68.1 234.9
MLOAM [8] MLOAM 25.7 26.1 33.9 263.4 47.4
FLOAM [5] FLOAM 25.8 26.3 32.4 71.3 161.1
LeGO-LOAM [6] LeGO-LOAM 27.3 33.5 36.3 140.9 68.2
S-Graphs [7] VGICP 25.6 26.8 35.1 260.1 190.1
S-Graphs+ VGICP 25.6 26.6 32.9 126.6 162.3
S-Graphs+ FLOAM 25.2 26.5 32.1 48.3 60.6

TABLE III: Computation time [ms] of S-Graphs+ along the
total length of the sequence [s] for In-House dataset.

Dataset

Computation Time (mean) [ms]

Module C1F1 C1F2 C2F0 C2F1 C2F2 C3F1 C3F2 LC1

Plane Segmentation 91.8 47.4 68.9 45.3 82.2 57.6 44.8 80.0
Room Segmentation 17.6 9.8 9.6 5.3 10.7 2.9 4.2 7.1
Floor Segmentation 8.1 3.4 4.6 7.2 44.7 4.0 16.9 9.6
Back-End 74.0 105.7 87.3 169.0 263.1 124.5 173.2 85.2

Sequence Length [s] 487 657 238 672 1044 558 999 339

the public TIERS dataset [18]. Experiments T6 to T8 are done
in a single small room in which the platform does several
passes at increasing speeds. Experiments T10 and T11 are
performed in a larger indoor hallway with longer trajectories of
the moving platform. Due to the absence of encoder readings
in this dataset, each baseline method uses its own LiDAR-
based odometry.

Tab. II presents the ATE for all baseline methods and
our S-Graphs+. S-Graphs+ with FLOAM odometry gives
the best results in all the experiments. Again, the sequences
are sorted from left to right by increasing size. Note that
all methods perform similarly for small scenes, but differ
as scenes become larger, S-Graphs+ presenting significant
error reductions for large environments. The strength of our
hierarchical representation is particularly evident in scenarios
like T11, in which S-Graphs+ keeps the errors small even if
the FLOAM odometry error grows substantially.

VII. CONCLUSION

In this work we present S-Graphs+, a novel four-layered
hierarchical factor graph composed of a keyframes layer, walls
layer, rooms layer and floors layer. To extract this high-
level information we also propose a novel room segmentation

algorithm using free-space clusters and wall planes and a floor
segmentation algorithm extracting the floor centers using all
the currently extracted wall planes. We demonstrate state-of-
the-art results against several baselines on simulated and real
experiments covering different office and construction indoor
environments.
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