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Abstract— High-quality maps are important in the con-
struction industry for conducting site surveys and building
inspections but existing acquisition methods can be expensive,
time consuming and require expert human operators. These
maps could be captured more efficiently and cost effectively by
using an autonomous aerial mapping system. Some commercial
systems already exist but the capabilities of existing research
platforms are more limited. The paper presents Osprey, an
autonomous aerial system capable of mapping large outdoor
structures without human intervention.

I. INTRODUCTION

Capturing high-quality 3D maps of structures is important
in the construction industry for surveying sites, monitoring
the progress of building projects and assessing infrastructure
integrity. Existing solutions typically require human experts
to operate specialised survey equipment (e.g., Total Stations
or Terrestrial Laser Scanners). These surveys can produce
highly accurate maps but are often expensive and time
consuming. If autonomous aerial mapping systems could
obtain maps of similar quality, without requiring the time
and expertise of a human operator, they would reduce the
cost and complexity of capturing construction surveys.

Commercial systems (e.g., Skydio 3D Scan and Emesent
Hovermap) have already demonstrated the efficacy of captur-
ing high-quality structural maps with autonomous aerial plat-
forms. They are being deployed to inspect critical infrastruc-
ture (e.g., cell towers and bridges), survey construction sites
and map underground environments for mining applications.
These commercial systems achieve state-of-the-art mapping
capabilities by tightly integrating bespoke sensor payloads
and aerial platforms with advanced mapping algorithms.

Research systems for autonomous aerial mapping have not
yet demonstrated equivalent capabilities to these commercial
systems. This is likely due to the complexity of developing
and integrating the constituent components required to cre-
ate a complete mapping system. An autonomous mapping
system requires five key components: (i) a sensor payload
to capture measurements, (ii) an odometry or localisation
algorithm to estimate the platform pose, (iii) a mapping
algorithm to aggregate measurements from different poses,
(iv) a mission planner to decide where measurements should
be captured from and (v) a motion planner to safely navigate
the platform. Most existing work on autonomous aerial
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Fig. 1. The Osprey autonomous aerial mapping system surveying a large
industrial building.

mapping focuses specifically on developing mission planning
algorithms and is only evaluated in simulation or small
indoor environments. Some aerial mapping systems have
been demonstrated operating in larger real environments,
both outdoors and underground (e.g., multiple teams in the
DARPA SubT Challenge used autonomous aerial systems).

This paper presents Osprey (Figs. 1 and 2), an autonomous
aerial system whose constituent components have all been
developed by labs in the Oxford Robotics Institute (ORI).
The Osprey system uses an off-the-shelf DJI M600 drone
as the base aerial platform and includes a custom sensor
payload developed by our lab called Frontier [1]. It inte-
grates the Visual Inertial Legged/Lidar Navigation System
(VILENS) [2] algorithm for odometry, VILENS-SLAM [1]
for mapping, the Surface Edge Explorer (SEE) [3] for
mission planning and Adaptively Informed Trees (AIT*)
[4] for motion planning. Field experiments with the Osprey
mapping system demonstrate that it can autonomously map
large buildings without human intervention.

The remainder of this paper is structured as follows.
Section II presents an overview of related research on au-
tonomous aerial mapping systems. Section III presents the
Osprey system and its constituent components. Section IV
presents the results of field experiments conducted with Os-
prey. Section V reviews the mapping capabilities of Osprey
and discusses future work with the system.

II. RELATED WORK

Most work on autonomous aerial mapping systems focuses
on developing efficient mission planning algorithms. These
are often only evaluated in simulation environments [3, 5–9]
due to the complexity of integrating a mission planner into
a complete autonomous mapping system. Some complete
mapping systems are demonstrated on aerial platforms in



small indoor environments [10–14] but their scalability to
larger scenes is typically not demonstrated and may not
be achievable without an external positioning solution (e.g.,
from a VICON system) [13, 14]. Complete aerial mapping
systems have also been developed to map large underground
[15–17] and indoor environments [18] using exploration-
based mission planning.

Some autonomous aerial systems have been presented that
can map outdoor environments [19–24]. Most of these use
visual [19–21] or visual-inertial [22, 23] sensor payloads
and obtain maps with visual reconstruction methods (e.g.,
multiview stereo). The captured maps are complete but the
metric accuracy of these reconstructions is typically lower
than LiDAR measurements. Yoder et al. [24] present a
system using a sensor payload with a LiDAR, IMU and
cameras that is similar to the one presented in this work.

This paper presents Osprey, an autonomous aerial mapping
system that can capture maps of large outdoor structures
without human intervention. The Osprey mapping system
uses a sensor payload consisting of a LiDAR, IMU and stereo
depth camera.

III. OSPREY SYSTEM

Autonomous aerial mapping systems are comprised of
five key components. A sensor payload (e.g., with cameras,
LiDARs and IMUs) mounted onto an aerial platform captures
measurements. An odometry or localisation algorithm uses
these sensor measurements to estimate the platform motion
relative to a starting pose or identify its position in a
global reference frame. A mapping algorithm integrates the
measurements captured at different poses into a common ref-
erence frame and can correct for drift in the odometry system
by identifying loop closures. A mission planner determines
where the platform should capture measurements from so as
to ensure coverage of all surfaces within a bounded region
of space. A motion planner can then use an occupancy grid
representation of the map to identify collision-free paths for
the platform to traverse when moving between viewpoints.
The following sections describe the implementations of each
component used in the Osprey mapping system.

A. Sensor Platform

The Osprey mapping platform (Fig. 2) is comprised of
an off-the-shelf DJI M600 drone and a custom Frontier [1]
sensor payload. The DJI M600 is a hexrotor drone with an
integrated flight controller, IMU and GPS receiver. It has
a flight time of up to 30 minutes when carrying the 3 kg
Frontier payload. The Frontier sensor payload combines an
Ouster OS1-64 LiDAR, an Intel RealSense D435i stereo
depth camera and an Intel NUC computer into a single device
which is mounted onto the drone and powered from a battery.
All processing is performed onboard the Intel NUC.

B. Odometry or Localisation

It is necessary to know the platform pose in a common
reference frame when capturing sensor measurements in
order to combine them into a consistent map. The platform

Fig. 2. Photograph of the Osprey aerial platform, a DJI M600 drone with
a Frontier sensor payload mounted underneath it.

pose can be determined either by estimating its motion
relative to a starting position with an odometry algorithm
or by identifying its location within a global reference frame
using a localisation method (e.g., GPS). The Osprey mapping
system uses the VILENS [2] odometry algorithm to estimate
the platform pose as it provides better accuracy than GPS.

VILENS is a multi-sensor fusion odometry algorithm that
can combine measurements from several different sensors
(e.g., camera, IMU, LiDAR and GPS) into a factor graph
representation to compute a single robust estimate of the
platform’s motion. The Frontier sensor payload can provide
visual features from the RealSense camera and geomet-
ric features from the Ouster LiDAR while the DJI flight
controller can provide IMU and GPS measurements. We
experimentally evaluated different combinations of these
sensor inputs with VILENS and determined that the best
pose estimation was achieved by using geometric features
from the LiDAR and inertial measurements from the IMU.

C. Mapping

The mapping component of an autonomous mapping
system combines the measurements captured from different
poses into a complete map of the environment. This map
can be used by the motion planner to identify collision-free
paths for the platform to traverse through the environment.

The Osprey mapping system uses VILENS-SLAM [1]
to create a map of the environment as the drone moves
between viewpoints chosen by the mission planner. New
measurements are captured by the LiDAR and added to the
map every 0.5m in addition to at the chosen viewpoints in
order to obtain a denser map. VILENS-SLAM uses a pose
graph to represent both the measurements obtained and the
pose they were captured from. When the platform returns to
a location close to one previously visited, as determined by
the VILENS odometry estimate, the pose graph is used to
check for a loop closure by computing an Iterative Closest
Point (ICP) alignment between the current measurements and
the set of measurements associated with a nearby pose in the
pose graph. If the computed alignment is valid then it can be
added to the pose graph as a loop closure. This helps correct
for odometry drift and produces a better combined map.



D. Mission Planning

The mission planner determines where the mapping sys-
tem should capture measurements from in order to obtain
a complete map of the environment. Most systems use a
Next Best View (NBV) approach for mission planning which
evaluates the current map and decides where measurements
should be captured from next in order to best improve it.

The Osprey system uses SEE [3] for mission planning.
SEE is a NBV approach that aims to capture a minimum
measurement density from all surfaces in the environment. It
generates viewpoint proposals to capture measurements from
surfaces with insufficient density and extend its map into
unobserved regions. Next best views are iteratively chosen
from these proposed viewpoints to improve the map until the
environment is completely observed. SEE maintains an in-
ternal map representation separate from the VILENS-SLAM
map but utilises the same pose graph to take advantage of
loop closure corrections from VILENS-SLAM.

E. Motion Planning

A motion planner is required to identify collision-free
paths for the platform to move along between viewpoints
chosen by the mission planner. Collisions are detected by
using a voxel representation of the map to identify regions
of occupied and free space.

The Osprey system uses AIT* [4], an almost-surely
asymptotically optimal sampling-based planner, for motion
planning. AIT* is able to plan efficient collision-free paths
between viewpoints by finding an initial solution and then
continuously improved it within the remaining budgeted
planning time.

IV. FIELD EXPERIMENTS

The mapping performance of the Osprey system is demon-
strated qualitatively by experiments conducted on a large
industrial building at the Fire Service College, Moreton-in-
Marsh, United Kingdom. The structure is a standalone two-
storey building approximately 28x14x13m in size. Osprey
was able to autonomously capture maps of the structure
in multiple experiments. The mean mapping time for each
experiment was 20 minutes and the mean distance traversed
by the platform was 400 meters. In these experiments the
mission planner was constrained to proposing viewpoints that
would obtain a complete map between 3 and 10m vertically
in order to maintain a safe distance above the ground and
ensure that the odometry system could provide a reliable
pose estimate, which was not possible when flying above the
building due to the LiDAR’s limited vertical field-of-view.

Qualitative results present the flight path of the platform
and the map captured by VILENS-SLAM during one of the
experiments (Fig. 3). The loops in the flight path were caused
by repeated attempts by the motion controller to reach a
viewpoint due to adverse conditions (e.g., wind gusts). The
map is presented with two textures: a height colourmap and
with true colour overlaid from RealSense camera images.
The true colour map has slightly less coverage than the
height coloured map as not all points in the pointcloud

could be assigned a colour from the camera images. A video
of the experiment is available at https://youtu.be/
MphGpIPniOE. These results show that the Osprey system
was able to autonomously capture a map of the building that
is complete within the bounding and visibility constraints of
the mission planner.

V. CONCLUSIONS AND FUTURE WORK

High-quality 3D maps of structures are important in the
construction industry for inspecting and assessing building
projects but existing solutions for obtaining them can be
expensive and time consuming. Capturing maps with an
autonomous aerial mapping system can make obtaining this
data cheaper and easier. Some commercial systems already
exist but the capabilities demonstrated by research systems
are more limited. The Osprey mapping system presented in
this paper demonstrates that it is capable of mapping large
outdoor structures without human intervention.

Future work with the Osprey mapping system will focus
on upgrading the sensor payload with a wider vertical field-
of-view LiDAR for flying above buildings and multiple
colour cameras to produce maps with better true colour. The
robustness of the motion controller will be improved and
multimission capabilities will enable the mapping of larger
structures over multiple flights. Experiments with the new
system will quantitatively compare the captured map with
one obtained using survey equipment.
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