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Abstract—In this paper, we present a multimodal localization
system for construction robotics operated in job sites where visual
simultaneous localization and mapping (VSLAM) algorithms can
yield inaccurate and inconsistent results due to environmental
factors such as insufficient textures, occlusion, and unstable light-
ing conditions. The system integrates Ultra-Wideband (UWB)
ranging and inertial measurement unit (IMU) with VSLAM as
complementary sensing modalities. The integration of UWB and
IMU can mitigate the cumulative drift of VSLAM and provide
reliable localization when VSLAM fails. The fusion of multiple
sensing modalities is based on the extended Kalman filtering
(EKF) framework. We tested the localization system in real
indoor environments with an industrial robot and validated it
with ground truth data. The result shows that the proposed
multimodal localization system achieves robust performance with
increased accuracy under three test conditions — inconsistent
lighting, regions with minimal features, and regions with repeti-
tive patterns.

I. INTRODUCTION

Indoor construction robotics can assist humans in a wide
range of processes at different stages, including, installation,
finishing, inspection, maintenance, and demolition. Among all
these scenarios, location estimation is essential for robots to
effectively navigate and perform tasks autonomously. Visual
simultaneous localization and mapping (VSLAM) is one of the
most adopted techniques for indoor localization. By extracting
the visual features of a sequence of images as descriptors, the
position of the camera can be tracked in real time. However,
several environmental factors of indoor construction sites can
pose challenges to VSLAM (Figure 1).

• Inconsistent illumination
Construction sites can rely on temporary lighting or natural
light. For areas with low light (shadows, e.g.) and inconsistent
illumination (turning on/off artificial lighting, e.g.), VSLAM
may fail in feature tracking leading to drift and errors in
localization.

• Regions with minimal features
VSLAM, such as ORB-SLAM [1], can yield impressive results
in well-textured environments. However, construction job sites
are not always texture rich. For example, concrete buildings
with flat walls can pose challenges to feature detection when
the wall surface shares similar color and reflectivity.

• Regions with repetitive patterns
Repetitive building components, such as scaffolding, can be
self-similar with insufficient visual feature variations. VSLAM

Fig. 1. Challenging scenarios on job sites for visual SLAM including (a) a
vertical white wall surface without rich textures (b) a roller door with repetitive
line patterns (c) areas with artificial lighting that may change over time.

is prone to fail due to the lack of distinctive feature points,
visual ambiguity, and false matches.

In addition, indoor construction sites are not suitable for
global navigation satellite systems (GNSS), as GNSS signals
can be blocked or weakened by walls and other obstacles.
To improve the robustness of VSLAM in such environments,
this study proposes a multimodal localization system that
integrates ultra-wideband (UWB) wireless localization and
inertial measurement unit (IMU) into VSLAM systems to
mitigate accumulative drift and enhance robustness. By lever-
aging the synergies between UWB, IMU, and VSLAM, our
multimodal localization can overcome the limitations of each
sensing modality, providing robust localization in cluttered
construction environments. When the VSLAM fails to provide
reliable estimation, the complimentary sensing modalities can
function to maintain localization consistency. Additionally,
UWB, as a global feature-independent localization system, can
correct the cumulative drift caused by VSLAM, leading to
enhanced accuracy in long-term localization tasks.

In this paper, we build our VSLAM system upon the ORB-
SLAM framework and combine the UWB and IMU localiza-
tion systems with the VSLAM system through the extended
Kalman filter (EKF). The proposed multimodal localization
system is tested under three scenarios — inconsistent illumi-
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nation, repetitive pattern, and insufficient features. Through
validating with the ground truth, we found that the integration
of UWB and IMU can enhance robustness when VSLAM fails
at feature extraction or correspondence matching. Meanwhile,
the cumulative drift caused by VSLAM can be reduced by
UWB positioning. Real-world experiments demonstrated the
feasibility and reliability of the system with applications in
the domain of indoor localization for construction robotics.

II. RELATED WORK

Ultra-wideband (UWB) as a wireless communication tech-
nique has been adopted for precise indoor localization in
recent decades. Compared to other wireless communication
technologies, such as radio frequency identification (RFID),
Wi-Fi, and Bluetooth, UWB has advantages including (1)
accuracy: UWB can achieve high ranging accuracy (sub-
centimeter) even in harsh environments due to its resistance to
multipath [2]. (2) robustness: UWB is more resistant to signal
interference, since the signal can be transmitted simultaneously
over multiple frequency bands [3]. (3) power consumption:
UWB shows lower normalized energy consumption compared
to other wireless communication protocols such as Wi-Fi and
ZigBee [4]. For long-term localization, UWB can be a suitable
option in terms of energy efficiency. With the aforementioned
aspects taken into account, many studies have been conducted
to integrate UWB into VSLAM to mitigate scale ambiguity,
improve accuracy, and improve robustness [5] [6]. For exam-
ple, UWB can effectively overcome scale ambiguity and scale
drift when combined with monocular VSLAM systems [7] [8].
In GPS-denied environments, UWB can serve as indoor GPS
to supplement visual SLAM by providing global constraint [9]
or local correction [10]. For long-term localization, UWB
can mitigate cumulative drift caused by visual SLAM [11].
For large-scale applications, UWB can be combined with
LiDAR to improve localization accuracy [12] [13]. By tightly
coupling multiple sensors such as IMU, monocular camera,
and UWB, the optimization can be done in a joint manner for
a more robust and accurate localization [14] [15]. Extended
from previous works, this study proposes a novel multi-
modal localization system for construction robotics operated
in unstructured environments, the integration of UWB can
potentially address the VSLAM failures caused by inconsis-
tent illumination, insufficient features, and repetitive patterns
which are commonly seen in job sites.

III. METHOD

We use three measurements — IMU, the peer-to-peer ranges
between UWB nodes, and the range between the robot and
the 3D position of the visual features as the source for indoor
localization. IMU and UWB are first combined, and then we
use EKF for the data fusion of VSLAM and the rectified UWB
(Figure 2). We use a set of Marvelmind Super-MP-3D beacons
for UWB localization and a Kinect sensor for VSLAM. The
update rates for VSLAM and UWB are set to 30 𝐻𝑧 and
15 𝐻𝑧 respectively.

UWB localization uses ultra-wideband impulse radio to
measure the distance between mobile and stationary base

Fig. 2. System flowchart of the multimodal localization system

beacons. Localization of the target using UWB beacons
requires (1) three known stationary beacons with known
height or (2) four known stationary beacons [16]. In this
study, we set up four stationary base beacons in a room of
5.0 𝑚 (𝑊) × 15.0 𝑚 (𝐿) × 2.8 𝑚 (𝐻).The four base beacons
are synchronized, and the position of each beacon is self-
calibrated. The distance between the mobile beacon and the
base beacon can be estimated by the Time-of-Arrival (ToA) of
UWB signals. In each time slot, the mobile beacon transmits a
short-duration and low-power pulse signal at a unique channel
with a time stamp, and the stationary beacon responds with a
time stamp after a predefined time. Since the UWB sensors are
synchronized at a picosecond level, we can precisely calculate
the distance based on the difference between two-time stamps
and the speed of the signal. Then we can obtain the location
of the mobile beacon using multilateration (Figure 3).
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Where 𝑖 is the index of the base beacons, (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is
the coordinate of 𝑖 th stationary beacon which is known
after self-calibration.(𝑥′

, 𝑦
′
, 𝑧

′ ) and (𝑥, 𝑦, 𝑧) are the unknown
coordinates of the mobile beacon before and after the error
minimization of multilateration. 𝑟𝑖 is the distance between
each base beacon and the mobile beacon. 𝑇𝑖,𝑐𝑦𝑐𝑙𝑒 is the time
between the mobile beacon sending the signal and receiving
the response. 𝑇𝑖,𝑟𝑒𝑝𝑙𝑦 is the time between a base beacon
receiving the signal and sending the response. 𝐶 is the speed
of light(3 × 108 𝑚/𝑠).

The multipath interference caused by the reflections of
UWB signals off walls and non-line-of-sight (NLOS) can
affect signal accuracy, leading to inaccurate localization. IMU
can provide more accurate short-term localization invariant to
external factors. If the relative position between the UWB
and IMU is larger than a threshold, e.g. 0.25 m, we use the
predicted position of IMU to correct the UWB localization
and remove the outlier. As the update frequency rate of IMU
is higher than UWB, the integration of IMU data is processed
after two frames of UWB data are processed.

VSLAM tracks features such as corners and edges in
the environment and estimates the movement of the camera
between consecutive frames. We use ORB-SLAM2 [17] for
tracking the RGB-D camera’s position and building the map
of the environment. The RGB-D camera and UWB systems
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Fig. 3. Infrastructure layout of the UWB positioning system

are synchronized to a common time reference, and thus the
localization information of the two systems can be aligned
and paired for data fusion. As UWB localization is a general
non-linear system, we use the extended Kalman filter (EKF)
framework to couple UWB and VSLAM localization for more
robust and accurate estimation.

The EKF is conducted in two steps — time updates and
measurement updates. Once initialized, EKF predicts the sys-
tem state at the next step and the uncertainty of the prediction.
When the measurement is received, the system updates the
prediction and the uncertainty of the current state.

The state vector 𝑥 consists of position and velocity
(𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧)can be defined as:
𝑥 = [𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 , 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧]𝑇 ∈ R6

The prediction of the next state can be defined as

𝑥𝑘+1,𝑘 = 𝑓 (𝑥𝑘,𝑘 , 𝑢𝑘) (3)

𝑃𝑘+1,𝑘 = 𝐹𝑘,𝑘𝑃𝑘,𝑘𝐹
𝑇
𝑘,𝑘

+𝑄𝑘,𝑘 (4)

where 𝐹 is the state transition matrix. 𝑃𝑘,𝑘 and 𝑄𝑘,𝑘 are
the covariances of 𝑥𝑘,𝑘 ,𝑤𝑘,𝑘 respectively. 𝑢𝑘 is the control
input.𝑥𝑘+1,𝑘 is a predicted system state vector at time step
𝑘 + 1 , 𝑥𝑘,𝑘 is an estimated system state vector at time step 𝑘

.
In the update step, we can obtain the measurement 𝑧𝑘

to calculate the Kalman gain 𝐺𝑘 . We then update the state
covariance matrix by

𝐺𝑘 = 𝑃𝑘,𝑘−1𝐻
𝑇
𝑘
(𝐻𝑘𝑃𝑘,𝑘−1𝐻

𝑇
𝑘
+ 𝑅𝑘)−1 (5)

where 𝑅𝑘 is the covariance matrix of measurement
uncertainty.𝐻𝑘 is the Jacobian matrix of measurement, which
can be defined as partial derivatives of the measurement
function with respect to each state variable.

𝐻𝑘 = 𝜕ℎ(𝑖)/𝜕𝑥( 𝑗) (6)

where 𝑖 is the index of the measurement component. 𝑗 is the
index of the state variable. 𝐻𝑘 needs to be computed at each
time step.

We can then update the estimate with measurements by

𝑥𝑘,𝑘 = 𝑥𝑘,𝑘−1 + 𝐺𝑘 (𝑧𝑘 − 𝐻𝑘𝑥𝑘,𝑘−1) (7)

And update the uncertainty by

𝑃𝑘,𝑘 = (𝐼 − 𝐺𝑘𝐻𝑘)𝑃𝑘,𝑘−1 (8)

In this work, the implementation can be described as follows
• Initialization

We initialize the state vector by using an ArUco marker as a
global reference frame for UWB and VSLAM (as robots can
start from a known location). We set the covariance matrix
based on prior empirical knowledge.

• Prediction
The measurement 𝑧𝑘 at timestamp 𝑘 contains the position and
heading offset obtained from the UWB / IMU and VSLAM,
and the predicted measurement 𝑧𝑘+1,𝑘 is defined as

𝑧𝑘+1,𝑘 = ℎ(𝑥𝑘+1,𝑘) + 𝑣 (9)

where 𝐻 ∈ R8×6 is the measurement model. 𝑥𝑘+1,𝑘 ∈ R6×1

is the predicted next position at time stamp 𝑘 . 𝑣 represents
the uncertainty in the measurement. We can then obtain the
innovation sequence 𝑖𝑘defined as

𝑖𝑘 = 𝑧𝑘+1,𝑘 − 𝑧𝑘 (10)

The innovation sequence can be used to calculate the Kalman
gain, which determines the weight given to the predicted
state estimate and the actual measurement to update the state
estimate.

• Estimation
The estimation can be done through Equation (7) The Kalman
gain and state covariance are updated accordingly.

• Update
After estimation, we can update the state vector based on
the measurements using the Kalman gain. The state vector
contains information about the location and velocity of the
target.

VSLAM localization can fail due to environmental factors
such as inconsistent illumination and insufficient features.
We incorporate a data pre-processing step into the pipeline
before the data fusion to identify VSLAM failures. We defined
an empirical threshold e.g. 0.2 𝑚. If the relative distance
between the VSLAM and UWB localization is larger than the
threshold, the VSLAM localization is considered as an outlier
and replaced by a new position that shares the same heading
offset with the UWB localization at an offset distance of the
threshold value.

IV. RESULTS

Fig. 4. Trajectories obtained using UWB-only, VSLAM-only, and the
proposed multimodal localization system.

Table I gives the average absolute distances between esti-
mated and ground truth trajectories over time stamps. From the
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Fig. 5. Performance comparison of VSLAM-only, UWB-only and the proposed multimodal localization system (UWB+IMU+VSLAM) under three test
conditions — (a) repetitive pattern, (b) poor textured surface and (c) inconsistent illumination.

TABLE I
THE AVERAGE TRANSLATION ERROR ALONG X, Y AND Z AXIS

VSLAM-Only UWB-Only Ours
𝑥 (m) 0.18 0.53 0.13
𝑦 (m) 0.12 0.13 0.09
𝑧 (m) 0.27 0.33 0.23

table, we can see that the integration of VSLAM can provide a
reliable short-term localization, which can significantly reduce
the impact of the UWB range measurement outliers caused
by environmental factors such as noise, interference, and
occlusion (Figure 4). When the environment contains rich,
unique visual features and the trajectory is short (the trajectory
length in this experiment is 1864 mm) and closed, VSLAM
localization can provide an accurate estimation of relative
translation and orientation.

We used three environmental interference, including incon-
sistent illumination, repetitive pattern, and insufficient features,
to test the robustness of the multimodal localization system.

• Regions with repetitive patterns
Components, such as roller doors, contain repetitive visual
features which can pose challenges to the feature tracking in
VSLAM localization. We use a roller door as a target object
to test if the multimodal localization system can remain robust
when symmetric or repetitive scene patterns bring ambiguities
for feature correspondence.

• Regions with minimal features
Some areas of perpendicular walls in the test environment are
blank or poorly textured. Insufficient visual features inliners
can reduce the accuracy of VSLAM. We designed a trajectory
passing through a blank wall to evaluate the multimodal local-
ization system when distinct visual features are insufficient.

• Inconsistent illumination

To test the influence of illumination on the system’s robust-
ness, we set up two controllable illumination conditions —
the dark environment and the normal environment. We define
artificial indoor light of 300 lux as a normal environment
and 30 lux as a dark environment. We can test the impact
of inconsistent illumination on the multimodal localization
system by switching between two illumination conditions.

In each visually challenging environment, we tested three
localization approaches including VSLAM-only, UWB-only,
and the multimodal system (UWB, IMU and VSLAM). As
shown in Figure 5, when the lighting condition changes
from normal to dark, VSLAM localization fails due to poor
feature extraction and matching. When the lighting condition
returns to normal, the accumulated errors lead to significant
drift. Meanwhile, we can see that the UWB-only localization
is affected by Non-Line-of-Sight (NLOS) when the UWB
signal is obstructed. The attenuation of UWB signals leads
to noise and inaccuracy in UWB-only localization. However,
IMU sensors, as a complementary modality, optimize UWB
localization when the current UWB measurement is identified
as an outlier. The localization trajectory obtained using the
multimodal system remains robust when both VSLAM and
UWB localization fail.

Both repetitive patterns of the roller door and the poorly tex-
tured blank wall affect the accuracy of VSLAM. Small errors
in orientation or position estimation can lead to significant
accumulated drift. When VSLAM fails to provide accurate
estimation, The combination of UWB and IMU provides reli-
able and globally consistent range measurement and corrects
the drift. The pre-processing step for outlier removal before
EKF fusion effectively avoids the interference of VSLAM
failures on the pose estimation. The result illustrates that
our multimodal localization system can enhance the system’s
robustness and overcome the limitations of each localization
system by its own.
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V. CONCLUSION

This paper presented a robust multimodal localization ap-
proach for indoor construction robotics. The approach inte-
grates multiple sensor readings from RGB-D cameras, UWB
and IMU to mitigate drift errors caused by each single sensor.
We tested the multimodal localization system under three
commonly seen conditions in job sites, including inconsis-
tent ambient lighting, surfaces with repetitive patterns, and
poor textured surfaces. In the experiments, the multimodal
localization system demonstrates robustness when VSLAM
localization fails. When both UWB and VSLAM provide
reliable localization, the UWB can reduce the drift error
caused by VSLAM, and VSLAM can enhance the accuracy
when the UWB is affected by noise in a local region. The
limitation of the system lies in the coverage area of UWB
sensors. In the experiment, we set up four UWB beacons
to cover a room of 75 𝑚2. The increased area may involve
more stationary UWB beacons. In future work, an optimization
approach for effective UWB beacon layout can be investigated
to enhance the scalability of the localization system for large-
scale construction sites such as tunnels. The strategically
placed UWB beacons can effectively increase the robustness of
the localization system. As a complementary global constraint,
UWB can provide reliable localization when sensors such as
light detection and ranging (LiDAR) and GNSS fails due
to signal blocking, insufficient geometric features, or object
occlusion.
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