
Deep Reinforcement Learning-based Task Assignment and Path Planning

for Multi-agent Construction Robots

Xinghui Xu 1,*, Borja García de Soto 2,*

Abstract—Recent developments in deep learning have

enabled reinforcement learning (RL) methods to drive optimal

policies for a sophisticated high-dimensional environment,

which is suitable to overcome the challenges of implementing on-

site construction robots, such as the dynamic nature of the

construction environment and inherent complexity to solve the

multiple decision-makers interacting simultaneously. In this

research, we are trying to propose a systematic framework to

adopt deep reinforcement learning (DRL) algorithms into on-

site construction robotic applications (e.g., bricklaying

platforms). This research has two main objectives: 1) Implement

a multi-agent path-planning (MAPP) method for on-site robots

that allow multiple mobile robots to navigate through the

environment toward the assigned goal position and conduct the

desired task logic while avoiding collisions, and 2) integrate the

multi-agent task allocation (MATA) framework to solve

complex tasks (e.g., laying bricks or delivering materials)

through the cooperation of individual agents by assigning

different tasks and roles to individual robots, which allows

multiple robots to work simultaneously, just as how human

workers act on a job site to make the best advantages of the

productivity gains.

I. INTRODUCTION

Construction tasks involve interaction among multiple
agents, where emergent behavior and complexity arise from
agents co-evolving together. Construction workers are
assigned different roles with a given set of tasks to
accomplish. During this process, different teams work in the
same environment. They either collaborate in reasonable
sequences or compete for resources (e.g., space) to get the job
done. When we implement multi-robot systems to finish a
task, considerations must be made to path planning [1],
resource allocation [2], sequence arrangement for operations
[3], and scheduling among robots [4]. The working schemes
of collaborative robots are essential to be investigated, which
allow them to work in a group just as humans to boost
productivity. However, most robot systems in the construction
domain are developed with a single-agent setting [5]. Previous
research has not investigated controlling robots
simultaneously to finish a construction task with the same
goal. This has been achieved in other areas for a long time,
such as game simulation [6], collaborative manufacturing [7],
network communication [3], warehouse delivery [8], etc.
There is a lack of knowledge of the broad adoption of robotic
components on construction sites.

As an essential branch of machine learning,
Reinforcement Learning (RL) can realize sequential decision-
making under uncertainties through end-to-end education and
has made a series of significant breakthroughs in robot
applications. With the development of deep learning, studies
on Deep Reinforcement Learning (DRL) algorithms with
robots have attracted researchers’ interest because of their
ability to handle high-dimensional data [9] with stochastic

dynamic reward functions [10]. It has led to a wide range of
impressive progress in various domains, such as industrial
manufacturing [7], robot control [11], autonomous driving
[12], multi-agent task allocation (MATA) [13], and multi-
agent path-planning (MAPP) [14] problems.

However, construction research has not investigated
approaches combining MATA and MAPP problems using
DRL. Previous research either looks into the stationary
MATA problem to find the optimal policy for the job
scheduling problem [15], or the navigation pathfinding
methodology [16] using DRL algorithms, which is insufficient
to adopt the DRL combined robots in the construction domain.
This study proposes a systematic framework incorporating
MATA and MAPP for a multi-agent construction robotic
system. We are adapting the multi-agent proximal policy
optimization (MAPPO) method for the MATA and MAPP to
solve a construction bricklaying problem by giving different
roles to the robots, such as bricklayer, material deliveryman,
and inspector (e.g., to monitor progress and quality). Robots
will follow a logic based on their roles, find the optimal
schedule to start the navigation and do the pathfinding from
initial points to execution areas. After reaching the goals, a
predefined action will be conducted with a determined
schedule. The final goal is to lay the bricks to specific points
with the shortest timespan and shortest distances navigated
during construction.

II. RELATED WORK

A. Multi-agent Task Allocation (MATA)

Gradually, much research has started to investigate
MATA. However, in the construction domain, it still needs to
be explored. The MATA problem has been systematically
defined in other areas, such as industrial manufacturing. Liu
et al. [17] solved a planning problem with a multi-agent
reinforcement learning (MARL) algorithm based on an
options framework to handle a cooperative multi-robot system
in an aircraft painting application. Agrawal et al. [18]
suggested the RL method for multi-robot task allocation in
warehouse environments. Recently a new framework by Lee
et al. [19] proposed a digital twin-driven DRL for adaptive
task allocation in robotic construction and tested it to assemble
prefabricated concrete bricks using stationary robotic arms in
a simulated environment. However, to make the robotic
system more suitable for construction tasks and more capable
of other roles on the construction site, the mobility of the
construction robots must also be implemented.

B. Multi-agent Path-Planning (MAPP)

 The MAPP robotic problem has caused a lot of interest in
different areas to handle dynamic environments. Shang et al.
[20] developed a collaborative path planning of a carrier-
based aircraft to improve the scheduling efficiency on the
aircraft carrier deck using MARL. Hu et al. [21] proposed an
Automated Guided Vehicle (AGV) conflict prevention path
planning method to enhance the container terminal’s
transportation cost and operational efficiency. Long et al. [22]
proposed an efficient multi-agent navigation in dynamic
environments, which is of great industrial value when

*S.M.A.R.T. Construction Research Group, Division of Engineering, New

York University Abu Dhabi (NYUAD), Experimental Research Building,

Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates
1PhD Student, xx927@nyu.edu
2Assitant Professor, garcia.de.soto@nyu.edu

deploying a large-scale fleet of robots to real-world
applications. We could adopt these algorithms for the same
use on the construction site to allow robots to navigate to the
assigned position while avoiding collisions.

C. MATA combined with MAPP

As indicated in the previous section, using a DRL-based
combination of MATA with MAPP is rare in the construction
literature. However, it has been investigated in other domains.
For example, various algorithms are proposed to solve the task
allocation and path planning problem in warehouse delivery.
Although these are used in controlled environments compared
to construction sites, these algorithms could be transferable
with modifications. For instance, Chen et al.[8] proposed a
marginal-cost assignment heuristic improvement strategy
based on Large Neighborhood Search, which allows the task
assignment and path planning to be performed simultaneously
in a warehouse package delivery system. Liu et al. [23]
addressed the combination problem with a sequential two-
stage problem: (1) task assignment followed by (2) planning.
The cost of the path planning task may be far higher than the
task assignment solver anticipated. But they didn’t consider
the uncertainty influence from the path planning to the task
allocation part. Elfakharany and Ismail [24] introduced a
method of decentralized sensor-level policy that performs
multi-robot task allocation and navigation from end to end.
However, it mostly considered the path planning part, which
is not suitable for the dynamics task logic of a construction
robot.

III. METHODOLOGY

A. Problem Identification

We combine MATA and MAPP in a simulated

environment to solve a construction bricklaying problem.

The main elements of the methodology, related steps, and

objectives are summarized in Table 1.

Different roles are given to the robots, such as bricklayer,

material deliveryman, and inspector. Thus, three robots are

deployed in a collaborative setting with different locations to

navigate and then do the execution. They will follow the basic

task logic, such as finding the optimal schedule to start the

navigation, considering the uncertainty of the path planning,

and doing the pathfinding from initial points to the goal

position. Robots are trained to understand their tasks and then

navigate to the corresponding goal. After reaching the areas,

a predefined action will be conducted with a determined

schedule and motion trajectory.

In this study, we are using DRL algorithms. The problem

is formulated as a partially observable Markov decision

process (POMDP). Each robot does a sequence of

observations and actions, forming a trajectory from its start

to the goal position chosen by the policy. The POMDP is

episodic, and each episode ends either with one of the robots

having a collision, all the robots successfully reaching the

goals, or the maximum episode duration being exhausted.

The goal is to finish the path-finding process and arrive at the

waypoint on an optimal schedule to start the construction

activities with the shortest time span and distances navigated.

B. Simulator and communication network setup

Training on such algorithms is often required. Testing the

algorithm directly on a real robot is unrealistic. Thus, a

simulator is needed to generate robot navigation and

manipulator motions with quantitative evaluations and

records. Middleware is required to communicate between the

simulator and the environment that facilitates implementing

a complex distributed application involving interacting

components and logic. The most popular middleware used in

robotics is the Robot Operating System (ROS). We use the

ROS-embedded simulator software (Gazebo) to simulate the

environment. Besides, we utilized a framework where a

developer combines numerous ROS node sub-processes into

an application package. In this study, ROS nodes with RL

training algorithms were developed and linked with other

ROS nodes to control the robots in the system architecture.

These nodes and their interactions will help the robot feed

forward the information from its sensors and wait for the

feedback from the training scripts to understand the optimal

policies in each step.

C. MAPPO algorithm

 We use the multi-agent proximal policy optimization
(MAPPO) method for the MATA, and MAPP adapts it to
complicated task allocation and path planning problems
(Figure 1). While various forms of the policy gradient (PG)
method exist, proximal policy optimization (PPO) has
demonstrated comparable or better performance than recent
PG approaches, and they are simpler to implement [25]. PPO
enables multiple updates per minibatch sample to promote
sample efficiency and guarantees policy optimization’s
stability by limiting the policy’s update amplitude [26]. It
ensures that the updated policy is not too different from the
old one to ensure low training variance suitable for
construction robot settings.

Figure 1. MAPPO Training Algorithm.

 We adopted the centralized learning, decentralized
execution paradigm [27] in which each robot has a copy of the
policy 𝜋𝜃 and the value 𝑉𝜑 networks. The policy and the value

networks have different weights 𝜃 and 𝜑 . The algorithm
(Figure 1) summarizes the data collection and training process.

At each time step, each robot receives its observation 𝑂𝑖
𝑡 and

uses its copy of the policy 𝜋𝜃 to generate the action 𝑎𝑖
𝑡. In the

following step, the observations measure the distance between
robots and goals, calculate the total and idle time in each
action, and make 2D laser scanner measurements of the
obstacles to rule out the collisions. The action space is just a
1D vector representing the linear velocity of the robot heading
towards the designed goals in each timestamp [𝑣𝑙

𝑡]. Then the

MAPPO (Multi-Agent Proximal Policy Optimization) Training Algorithm.

1. Initialize policy network 𝜋𝜃 old policy network 𝜋𝜃𝑜𝑙𝑑 and value network 𝑉𝜑

2. for iteration = 1,2,...do

3. # Data collection

4. 𝑇𝑡𝑜𝑡𝑎𝑙 ← 0

5. for episode = 1,2,... do

6. # Robots are running in parallel

7. for robot = 1,2,... N do

8. Run policy 𝜋𝜃 for 𝑇𝑖 time steps, collecting (𝑂𝑖
𝑡 , 𝑎𝑖

𝑡 , 𝑟𝑖
𝑡), where 𝑡 ∈ [0, 𝑇𝑖]

9. Calculate 𝐴𝑖
𝑡 = 𝛾𝜆 𝑡𝑇𝑖

𝑡=0 𝑟𝑖
𝑡 + 𝛾𝑉𝜑 𝑂𝑖

𝑡+1 − 𝑉𝜑 𝑂𝑖
𝑡

10. Returns 𝑅𝑖
𝑡 = 𝐴𝑖

𝑡 + 𝑉𝜑 (𝑂𝑖
𝑡)

11. 𝑇𝑡𝑜𝑡𝑎𝑙 ← 𝑇𝑡𝑜𝑡𝑎𝑙 + 𝑇𝑖

12. Break if 𝑇𝑖 ≥ 𝑇𝑚𝑎𝑥 or a collision happens or each robot reaches a goal

13. end for

14. Break if 𝑇𝑡𝑜𝑡𝑎𝑙 ≥ 𝑇𝑡ℎN, and send the data rollout to train the centralized networks

15. end for

16. # Update policy and value

17. 𝜃𝑜𝑙𝑑 ← 𝜃

18. for i=1,2... do

19. # Policy loss

20. 𝑟𝑎𝑡𝑖𝑜 𝑡 =
𝜋𝜃 𝑎𝑖

𝑡 𝑂𝑖
𝑡

𝜋𝜃𝑜𝑙𝑑 𝑎𝑖
𝑡 𝑂𝑖

𝑡

21. 𝐿𝑐𝑙𝑖𝑝 = (𝑚𝑖𝑛
𝑇𝑖
𝑡=0 (𝑟𝑎𝑡𝑖𝑜 𝑡𝐴𝑖

𝑡 , 𝑐𝑙𝑖𝑝 𝑟𝑎𝑡𝑖𝑜 𝑡𝐴𝑖
𝑡 , 1−∈, 1+∈)) /𝑇𝑡𝑜𝑡𝑎𝑙

22. # Value loss

23. 𝐿𝑣 = (𝑅𝑖
𝑡 − 𝑉𝜑 𝑂𝑖

𝑡
2𝑇𝑖

𝑡=0) /𝑇𝑡𝑜𝑡𝑎𝑙

24. # Entropy loss

25. 𝐿𝑒 = −(𝑎𝑖
𝑡 𝑙𝑜𝑔 𝑎𝑖

𝑡 1𝑇𝑖
𝑡=0 /𝑇𝑡𝑜𝑡𝑎𝑙

26. #Total loss

27. 𝐿 = −(𝐿𝑐𝑙𝑖𝑝 − 𝑐1𝐿𝑣 + 𝑐2𝐿𝑒)

28. Update 𝜃, 𝜑 with regard to 𝐿

29. end for

30. end for

Table 1. Research methodology, steps, and objectives
Steps Objectives

1. Simulator set up Address dynamic changes of the site.

2. Communication

network

Allow different robot settings trained in the

same framework.

3. DRL & MARL

algorithm

Investigate RL algorithms for construction

tasks.

4. Integrated MATA

and MAPP

simulation

Allow mobility of multi-agent robots.

Allow task allocation and scheduling of

multi-agent robots

reward function 𝑟𝑖
𝑡 is calculated. Each robot collects its data

 𝑂𝑖
𝑡 , 𝑎𝑖

𝑡 , 𝑟𝑖
𝑡 from the environment. Once the amount of data

exceeds a certain threshold 𝑇𝑡ℎ, the rollouts of data are sent to
a centralized copy of the policy and the value networks. Then,
the gradients of the objective function L with respect to the
centralized policy network weights 𝜃 and value network
weights 𝜑 are computed. Then, the Adam optimizer updates
the weights 𝜃 and 𝜑 using the learning rate 𝑙𝑟 for 𝐸 epochs.
After each update, each robot receives a copy of the update
weights 𝜃 and 𝜑 to start collecting a new batch of data. Thus,
the policy and value networks are trained on the experiences
collected by all the robots simultaneously.

D. Reward function

 Instead of precisely designing algorithms to manually
calculate and build up an optimal solver, we focused on the
reward function. Rather than defining each step for the robot
to find the optimal solution, we defined the final goals and
actions the robot could take in each step by using the DRL
algorithms to train the robot to act towards the desired goals.
In this specific problem of bricklaying robots, the reward
function incentivizes each robot to understand the correct
working logic and schedule, choose and move towards a
unique goal position, and decrease the total idle time and the
total distances with the shortest timespan and working
distances. It penalizes getting near obstacles and colliding
with them, multiple robots reaching the same goal position
and consuming extended amounts of time to reach the goal.
These are summarized as follows:

 𝑟𝑠
𝑙𝑜𝑔𝑖𝑐

 𝑖
𝑡

= {−𝑏

𝑎, 𝑊ℎ𝑒𝑛 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑡𝑒𝑎𝑚 𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
, 𝐼𝑛 𝑐𝑎𝑠𝑒 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑠 𝑡ℎ𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑎𝑠𝑘 𝑏𝑢𝑡 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

−𝑐, 𝑖𝑛 𝑐𝑎𝑠𝑒 𝑡ℎ𝑒 𝑟𝑜𝑏𝑜𝑡 𝑐𝑜𝑢𝑙𝑑 𝑛𝑜𝑡 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑎𝑠𝑘

 𝑟𝑠
𝑙𝑜𝑔𝑖𝑐

 𝑖
𝑡 is used to measure if the assignment of the task

follows the task logic of the construction work.

 𝑟𝑠
𝑖𝑑𝑙𝑒𝑡 𝑖

𝑡 = −𝑑𝑚𝑎𝑥
𝑡𝑖𝑑𝑙𝑒

𝑡𝑡𝑜𝑡𝑎𝑙

− 𝑒 ,0

 𝑟𝑠
𝑖𝑑𝑙𝑒𝑡 𝑖

𝑡 is used to calculate the percentage of the idle time,
and give a certain penalty for delaying the total time.

 𝑟𝑖
𝑡 = {

 𝑟ℎ
𝑖

𝑡
 + 𝑟𝑜 𝑖

𝑡 + 𝑟𝑜𝑏
𝑖

𝑡

𝑓, 𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑔𝑜𝑎𝑙

−𝑔, 𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑎 𝑔𝑜𝑎𝑙 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑟𝑜𝑏𝑜𝑡
−ℎ, 𝐼𝑛 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

𝑟𝑖
𝑡 is the general reward function of path planning, where

 𝑟ℎ 𝑖
𝑡 is a reward that increases in value when the robot is

heading toward the goal, 𝑟𝑜 𝑖
𝑡 is the reward that penalizes the

robot in case it is moving toward a goal position that another

robot is moving towards, 𝑟𝑜𝑏 𝑖
𝑡 is the reward that penalizes

the robot for getting near an obstacle.

 𝑟𝑠
𝑑𝑖𝑠 𝑖

𝑡 = −𝑖max
𝑑𝑖𝑠𝑖

𝑡

𝑑𝑖𝑠𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡

− 𝑗 ,0

 𝑟𝑠
𝑑𝑖𝑠 𝑖

𝑡 is a reward function to measure how good the distance
is compared to the shortest path between the initial points to
the assigned goals.

𝑅𝑖
𝑡 = 𝑟𝑠

𝑙𝑜𝑔𝑖𝑐
 𝑖
𝑡 + 𝑟𝑠

𝑖𝑑𝑙𝑒𝑡 𝑖
𝑡 + 𝑟𝑖

𝑡 + 𝑟𝑠
𝑑𝑖𝑠 𝑖

𝑡

𝑅𝑖
𝑡 is used to measure the overall performance of the actions

for robot 𝑖 at time step 𝑡 with 4 subparts’ reward on logic, time,
and distances. In order to distinguish the effects of these
subparts to clarify the goals (i.e., reward or penalty behavior),
we define the values (i.e., weights) for 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, ℎ, 𝑖, 𝑗 to
represent the reward/penalty received. For example, if we are
concerned only with the least time to get the optimized
schedule, we could give higher weights to the task logic and
idle time and lower weights to long-distance traveling. This

could help to train the algorithms with different settings under
multiple circumstances.

IV. RESULT AND CONCLUSION

A. Results

To test the proposed framework, we built a simulator in

the ROS Gazebo (Figure 2) that allows robots with different

roles to collaborate within the same environment. Three areas

(execution area, material area, and monitor area) were

defined, corresponding to different roles of activities

performed by different robots (TutleBot 1-r1, TutleBot 2-r2,

TutleBot 3-r3) in the simulator. Currently, the experiment is

implemented as a proof of concept to verify the feasibility of

combining path planning with the task allocation problem. It

is hard for the robot to navigate randomly inside this model

and find the optimal path without causing any collisions.

Most of the trails will exit without even starting the task

allocation part. Thus, we have simplified the problem to

decrease the uncertainties of the path planning part to ensure

the robot can arrive at the area in a specific time. The rigid

body of the obstacles is removed in the current experiment

and 𝑟𝑜𝑏 𝑖
𝑡 is ruled out to ensure the algorithm can run

entirely in each trial. Besides, to simplify the navigation part,

the robot will first change its orientation to the assigned goals

from its starting point in each trial. Thus, this simple setting

does not consider the penalty function of path planning

𝑟𝑖
𝑡 and the shortest path reward function 𝑟𝑠

𝑑𝑖𝑠 𝑖
𝑡 . The only

matter that causes the uncertainties from the path-planning

process is caused by the random velocities assigned to the

robot in each step. After several iterations, the robots will

arrive at the goal areas without any problem. In future

experiments, 𝑟𝑜𝑏 𝑖
𝑡 will be considered by using laser scanner

data to address the static and dynamic obstacles.

Figure 2. Simulator for combing MATA and MAPP in ROS Gazebo

Figure 3 shows two measurements in this experiment,

 𝑟𝑠
𝑙𝑜𝑔𝑖𝑐

 𝑖
𝑡 and 𝑟𝑠

𝑖𝑑𝑙𝑒𝑡 𝑖
𝑡 to evaluate the training result of the

task schedule assignment and path planning. For the

simplicity of showing the subparts’ performance, we are

using a fixed seed to report the result. The numerical numbers

come from the reward functions with different weights. The

higher the cumulative reward (y-axis), the better the

performance of the robots. Overall, the cumulative reward is

stabilized after several episodes of training.

Robot 3 (r3) performs well on the total idle time and

task logic; the optimal policy is quickly gained, resulting in

the reward converging fast, as shown in Figure 3. This is due

to the independence of r3’s task of monitoring the other two

robots. In the first 2,000 episodes, Robot 1 (r1) and Robot 2

(r2) have some penalties on 𝑟𝑠
𝑙𝑜𝑔𝑖𝑐

 𝑖
𝑡 attributed to the

Turtlebot1

Turtlebot2

Turtlebot3

Material

Area

Execution

Area

Monitor

Area

interaction of the two robots because of a misunderstanding

of the orders causing the tasks to be performed following the

wrong schedule. However, in the end, after around 5,000

episodes, they find a way to generate the optimal policy to

finish the task to gain the maximum reward. This means that,

as expected, the goals are understandable and reachable after

training. The falling of the yellow line 𝑟2 − 𝑙𝑜𝑔𝑖𝑐 is due to

the collision between the material delivery (assigned to 𝑟2)

with the assigned execution point generated for 𝑟1. This

causes a penalty on the result of the task assignments.

Figure 3. Training result of MAPPO on 3 robots

B. Concluision and outlook

In this study, we propose a multi-agent proximal policy

optimization (MAPPO) method that combines MATA and

MAPP problems for a collaborative construction robotic

application. The training results show the feasibility of the

proposed framework in a simple setting where the path

planning functionalities are simplified. To solve problems in

the construction domain, such as the bricklaying problem,

still, this work has many limitations. For example, path

planning with obstacles and moving objects should be

considered. In this way, more than the current driving of

robots from point to point is needed to address this challenge.

The robot’s action should be modified, and it will take longer

to find the optimal path. Second, the construction tasks

should be modeled in the simulator with the pick-and-place

function embedded. Third, more uncertainties need to be

considered. Currently, the goal position is randomly

generated inside the execution area, which is insufficient to

handle this issue to mimic the actual construction. Besides,

the roles of robots are now fixed; the switching roles of robots

in different episodes should also be considered in a future

implementation. Future work includes enriching the elements

inside the simulator and the algorithm, and tests will be

conducted in a simulated environment alongside real-world

verification.

REFERENCES

[1] V. I. Gorodetskii, “Self-organization and multiagent systems: I.

Models of multiagent self-organization,” Journal of Computer and

Systems Sciences International, vol. 51, no. 2, pp. 256–281, 2012,

doi: 10.1134/S106423071201008X.

[2] J. Edmondson and D. Schmidt, “Multi-agent distributed adaptive

resource allocation (MADARA),” International Journal of

Communication Networks and Distributed Systems, vol. 5, no. 3, pp.

229–245, 2010, doi: 10.1504/IJCNDS.2010.034946.
[3] H. A. Al-Rawi, M. A. Ng, and K.-L. A. Yau, “Application of

Reinforcement Learning to Routing in Distributed Wireless Networks:

A Review,” Artif. Intell. Rev., vol. 43, no. 3, pp. 381–416, Mar. 2015,

doi: 10.1007/s10462-012-9383-6.

[4] J. Parker, “Task allocation for multi-agent systems in dynamic

environments,” in AAMAS, 2013.

[5] T. Bock and T. Linner, “Single-Task Construction Robots by Category,”
in Construction Robots, Cambridge University Press, 2016, pp. 14–290.

doi: 10.1017/CBO9781139872041.002.

[6] D. Silver et al., “Mastering the game of Go with deep neural networks

and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016, doi:

10.1038/nature16961.
[7] S. Mahadevan and G. Theocharous, “Optimizing Production

Manufacturing Using Reinforcement Learning,” in The Florida AI

Research Society, 1998.

[8] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,

“Integrated Task Assignment and Path Planning for Capacitated Multi-

Agent Pickup and Delivery,” IEEE Robot Autom Lett, vol. 6, no. 3, pp.

5816–5823, 2021, doi: 10.1109/LRA.2021.3074883.

[9] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep Reinforcement
Learning for Multi-Agent Systems: A Review of Challenges, Solutions

and Applications,” Dec. 2018, doi: 10.1109/tcyb.2020.2977374.

[10] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko,

“Reinforcement learning for control: Performance, stability, and deep

approximators,” Annu Rev Control, vol. 46, pp. 8–28, 2018, doi:

https://doi.org/10.1016/j.arcontrol.2018.09.005.

[11] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in

robotics: A survey,” Int J Rob Res, vol. 32, no. 11, pp. 1238–1274,
2013, doi: 10.1177/0278364913495721.

[12] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,

“Navigating Occluded Intersections with Autonomous Vehicles using

Deep Reinforcement Learning,” May 2017, doi:

10.48550/arxiv.1705.01196.

[13] Q. Zhu and J. Oh, “Deep Reinforcement Learning for Fairness in

Distributed Robotic Multi-type Resource Allocation,” in 2018 17th
IEEE International Conference on Machine Learning and Applications

(ICMLA), 2018, pp. 460–466. doi: 10.1109/ICMLA.2018.00075.

[14] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized Non-

communicating Multiagent Collision Avoidance with Deep

Reinforcement Learning,” Sep. 2016, Accessed: Apr. 26, 2023.

[Online]. Available: https://arxiv.org/abs/1609.07845

[15] C. Shyalika, T. Silva, and A. Karunananda, “Reinforcement Learning

in Dynamic Task Scheduling: A Review,” SN Comput Sci, vol. 1, no.
6, p. 306, 2020, doi: 10.1007/s42979-020-00326-5.

[16] J. Lin, X. Yang, P. Zheng, and H. Cheng, “End-to-end Decentralized

Multi-robot Navigation in Unknown Complex Environments via Deep

Reinforcement Learning,” Jul. 2019, Accessed: Apr. 26, 2023. [Online].

Available: https://arxiv.org/abs/1907.01713

[17] Z. Liu, B. Chen, H. Zhou, G. Koushik, M. Hebert, and D. Zhao,

“MAPPER: Multi-Agent Path Planning with Evolutionary
Reinforcement Learning in Mixed Dynamic Environments,” Jul. 2020,

doi: 10.48550/arxiv.2007.15724.

[18] A. Agrawal, A. S. Bedi, and D. Manocha, “RTAW: An Attention

Inspired Reinforcement Learning Method for Multi-Robot Task

Allocation in Warehouse Environments,” Sep. 2022, doi:

10.48550/arxiv.2209.05738.

[19] D. Lee, S. Lee, N. Masoud, M. S. Krishnan, and V. C. Li, “Digital twin-

driven deep reinforcement learning for adaptive task allocation in
robotic construction,” Advanced Engineering Informatics, vol. 53, p.

101710, 2022, doi: https://doi.org/10.1016/j.aei.2022.101710.

[20] Z. Shang, Z. Mao, H. Zhang, and M. Xu, “Collaborative Path Planning

of Multiple Carrier-based Aircraft Based on Multi-agent

Reinforcement Learning,” in 2022 23rd IEEE International

Conference on Mobile Data Management (MDM), 2022, pp. 512–517.

doi: 10.1109/MDM55031.2022.00108.

[21] H. Hu, X. Yang, S. Xiao, and F. Wang, “Anti-conflict AGV path
planning in automated container terminals based on multi-agent

reinforcement learning,” Int J Prod Res, vol. 0, no. 0, pp. 1–16, 2021,

doi: 10.1080/00207543.2021.1998695.

[22] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards

Optimally Decentralized Multi-Robot Collision Avoidance via Deep

Reinforcement Learning,” Sep. 2017, doi: 10.48550/arxiv.1709.10082.

[23] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and Path Planning for Multi-
Agent Pickup and Delivery,” in Proceedings of the 18th International

Conference on Autonomous Agents and Multi-Agent Systems, in

AAMAS ’19. Richland, SC: International Foundation for Autonomous

Agents and Multiagent Systems, 2019, pp. 1152–1160.

[24] A. Elfakharany and Z. H. Ismail, “End-to-End Deep Reinforcement

Learning for Decentralized Task Allocation and Navigation for a

Multi-Robot System,” Applied Sciences, vol. 11, no. 7, 2021, doi:

10.3390/app11072895.
[25] N. D. Nguyen, S. Nahavandi, and T. Nguyen, “A Human Mixed

Strategy Approach to Deep Reinforcement Learning,” Apr. 2018, doi:

10.1109/SMC.2018.00682.

[26] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,

“Learning Deep Features for Discriminative Localization,” Dec. 2015,

doi: 10.48550/arxiv.1512.04150.

[27] Y. and P. W. and K. T. K. S. and K. S. and C. H. Sartoretti Guillaume

and Wu, “Distributed Reinforcement Learning for Multi-robot
Decentralized Collective Construction,” in Distributed Autonomous

Robotic Systems, M. and O. M. Correll Nikolaus and Schwager, Ed.,

Cham: Springer International Publishing, 2019, pp. 35–49.

