
Hierarchical Propositional Logic Planning for
Multi-Agent Collective Construction

Shambhavi Singh1, Geordan Gutow2, Akshaya Kesarimangalam Srinivasan2, Bhaskar Vundurthy2, Howie Choset2

Abstract— We consider a Multi-Agent Collective Construc-
tion (MACC) scenario in which several identical cube-shaped
robots, each capable of carrying one cubic block, must assemble
a pre-specified structure composed of these blocks. To reach
higher levels of the structure the robots must build scaffolding
using extra blocks and remove it once the structure is finished.
Incorrect placement of a few blocks can make it impossible
to build some parts of the structure not considered until much
later causing long-chains of interdependent actions. We address
this challenge by introducing a hierarchical planning procedure.
First, a sequence of block placements and removals that builds
the structure is identified using propositional logic and graph
search. This high-level plan abstracts the precise paths taken
by the agents and hence has a much shorter planning horizon
than the full problem. Next, block placements or removals that
can occur in parallel are identified and the potential parallelism
is expressed using an action dependency graph. Finally, parallel
action streams are allocated to individual agents and a multi-
agent path-finding planner is employed to plan collision-free
low-level paths for the agents to build the structure. We
test this approach on six standard test structures and show
improvements over prior work. Our approach has a lower
computation time compared to a time-optimal optimization-
based approach as well as lower sum-of-costs compared to sub-
optimal approaches.

I. INTRODUCTION

Practical automated construction will require the coor-
dination of multiple agents. This work aims to construct
simple three-dimensional structures using several identical
agents. In other words, we solve the problem of using cube-
shaped robots to build a pre-specified structure, composed of
similar cube-shaped blocks, in a 3D grid world. In addition
to placing blocks that are part of the structure, robots are
sometimes required to construct scaffolding to place or
remove blocks from a higher level.

Previous approaches to this Multi-Agent Collective Con-
struction (MACC) problem include optimization [1], heuris-
tics [3][8], and distributed Reinforcement Learning (RL)
[6][9]. While optimization-based techniques produce time-
optimal solutions for the MACC problem, they do not
scale well with the size of the action space. On the other
hand, heuristic and RL approaches are known for generating

This work was supported by the Air Force Office of Scientific Research
1Shambhavi Singh is an intern at the Robotics Institute, Carnegie Mellon

University and a student at Birla Institute of Technology and Science, Pilani,
India (email: shambhas@andrew.cmu.edu)

2Geordan Gutow, Akshaya Kesarimangalam Srinivasan, Bhaskar Vun-
durthy Howie Choset are affiliated with Carnegie Mellon University, USA.
(email: {ggutow, akesarim, pvundurt, choset}@andrew.cmu.edu).

solutions quickly, with a compromise on the number of
actions needed to construct the structure.

In this work, we present a hierarchical approach to the
MACC problem that returns a construction plan that is,
in practice, near-optimal with respect to the total number
of actions taken by all the robots. At the same time, our
approach offers an order of magnitude improvement in the
solution computation time compared to [1]. To this end,
we first utilize a high-level planner to decide the order of
placement/removal of blocks, including the temporary scaf-
folding required to build the structure. A low-level planner
is then employed to plan agent-level coordination for block
placement and inter-agent collision avoidance.

II. PROBLEM FORMULATION

A. Problem Statement

The environment is a 3D grid world containing cube-
shaped robots and blocks. Robots can move up, down, left,
and right in the plane, as well as climb or descend one block
at a time. The robots can pick up, carry, and place a block in
another location. The edges of the workspace are assumed
to have an unlimited supply of blocks.

Definition 1 (Neighbor). Two locations (xi,yi),(x j,y j) that
are 1 unit apart in Manhattan distance

Definition 2 (Scaffolding blocks). Extra blocks that are not
part of the pre-specified structure but are placed to facilitate
robots to climb or descend from locations higher than 1 unit

The complete action space for the robots includes:
• move - move to a neighbor location (xi,yi) from (x j,y j)
• deliver - place a block at location (xi,yi) standing at

a neighbor location (x j,y j). Must be carrying a block,
and the height of blocks at the two locations must be
the same.

• pick−up - pick-up a block from location (xi,yi) stand-
ing at a neighbor location (x j,y j). Must not be carrying
a block and the tower at (xi,yi) must be one unit taller
than the tower at (x j,y j).

• enter - enter the world to a boundary location (xi,yi)
• exit - exit the world from a boundary location (xi,yi)

B. Performance Metrics

• Sum of costs: total number of actions taken by all robots
• Makespan: total number of time steps taken to build the

structure and remove all the scaffolding blocks

Fig. 1: Pipeline - A. The high-level plan generates a single sequence of block actions - Pick-up(P) or Deliver(D), B. An
Action Dependency Graph (ADG) encodes which block actions must occur before others, C. Parallelization of actions by
allocation to N robots, D. Generation of the complete plan by a multi-goal multi-agent path finding algorithm

• Computation Time: total time taken to compute the
solution

III. RELATED WORKS

The MACC problem considered here traces back the
TERMES project [4][2], in which teams of small robots
were used to build structures much larger than themselves
cooperatively. Multiple approaches have since solved ver-
sions of this problem like the one described in Section
II. Recent work includes an optimization approach [1] that
uses Mixed Integer Linear Programming to compute a plan
that guarantees the optimal makespan. They encapsulate the
environment dynamics and kinematics of robot movements
as constraints in their model and aim to minimize the sum
of costs once a minimum makespan is found. However, the
number of integer variables in the mixed integer program
is exponential in the makespan making this solution tech-
nique computationally expensive for structures with large
makespan.

At the other end of the spectrum, heuristic-based ap-
proaches [3], compromise on solution quality. This work rep-
resents the 3-dimensional goal structure as a 2-dimensional
matrix in the workspace. Robots traverse on a minimum
spanning tree on an edge-weighted graph of the workspace.
The approach attempts to minimize the number of pick-
up/place actions in a plan. Another solution to the problem
uses a Distributed Reinforcement Learning model [6] to train
agents to build structures using the Asynchronous Advantage
Actor Critic (A3C) algorithm.

The complexity of the MACC problem induces a trade-off
between solution quality and resource efficiency. Although
[1] finds a time-optimal solution, it suffers from high com-
putation times for even small and sparse structures. The
heuristic [3] approach finds solutions instantaneously, but ex-
periences diminishing solution quality in both makespan and
sum-of-costs as structures require coordination of multiple
agents [7]. The RL-based approach [6] returns incomplete or
high-cost solutions as structures become dense or complex.

Hierarchical planning has been used for long-horizon
planning problems to simplify the decision-making process.
The work in [11] uses Partial Order Planning to create

hierarchical time-flexible plans. These plans are then refined
by serially exploring them and finding complete solutions
to achieve the lowest cost solutions. We follow a similar
approach to solve the multi-agent collective construction
problem.

IV. APPROACH

The major steps in our approach as outlined in Fig. 1 are:
(A) High-level Plan: Generate a sequence of block pick-up

or deliver actions to build the structure
(B) Action Dependency Graph: Identify dependencies

within the block pick-up or deliver action sequence
(C) Multi-agent Task Allocation: Task N agents to complete

actions in the sequence respecting dependencies
(D) Multi-agent Path Finding: Plan collision-free paths for

the set of agent-action pairs

A. High-Level Plan

In our abstract representation at the high-level, we restrict
the actions to deliver and pick-up and refer to these as block
actions, as defined here:
• deliver - while carrying a block, place block at (xi,yi)

from a neighboring cell,
• pick−up - while not carrying a block, remove block at
(xi,yi) from a neighboring cell

Definition 3 (Action Location). The coordinates (xi, yi) a
block is delivered to or picked up from

Definition 4 (Parking Location). The coordinates (x j, y j) a
robot is standing at when it performs a block action

Finding the sequence of these abstract actions is modeled
as a graph search problem, where a vertex is a state of the
world, and edges are block actions that transform the state.
We are primarily interested in minimizing the sum of costs
at this stage, so in the abstract action space, we define the
edge costs for placement and removal of each block using
Algorithm 1. A cell (x, y) with blocks up to height h casts a
shadow s at cell (x0,y0) if h(x,y)> |x−x0|+ |y−y0|. When
a shadow is cast, the size of the shadow s at (x0,y0) is given
by h(x,y)−|x−x0|−|y−y0| [3]. Larger shadows or shadows

Algorithm 1: Calculate Cost of Block Actions
Data: Location, Input Structure S
Result: Cost of Pick-up and Delivery actions at all

locations in the workspace
1 for each cell (xi,yi) in the workspace do
2 Initialize usefulness factor u(xi,yi) ← 0
3 for each tower of height h(xk,yk) at (xk,yk) that

casts a non-zero shadow s at (xi,yi) do
4 s ← h(xk,yk)−|xk− xi|− |yk− yi|
5 u(xi,yi) ← u(xi,yi) + s/h(xk,yk)
6 end
7 end
8 Cost of Pick-up ← u(xi,yi) ∀ i

max{u(xi,yi) ∀ i}
9 Cost of Delivery ← 1 - u(xi,yi) ∀ i

max{u(xi,yi) ∀ i}

from multiple locations increase the usefulness of the said
block. Blocks with high usefulness are assigned a low cost
of placement but a high cost of removal, and vice-versa.

PDDL Formulation: The block actions are represented
using Planning Domain Definition Language (PDDL). These
actions encapsulate the placement or removal of a block at
the action location (xi, yi) while standing at a parking loca-
tion (x j, y j). As a reference, the definition of Deliver action
in PDDL is provided below. The NeighbourO f condition
selects a parking location that is a neighbor of the action
location. Sca f f olding ensures scaffolding blocks exist such
that a robot may climb/descend them and reach the parking
location of the action. We use the heuristically determined
Cost from Algorithm 1 to incentivize the choice of useful
scaffolding blocks. Finally, we build the framework using
PDDL in Julia-1.6.7 and invoke the A Star Forward Search
algorithm with a precomputed Fast Forward heuristic[13] to
obtain the sequence of actions.

Action Definition of Deliver in PDDL

Parameter : (xi,yi)

Preconditions : ∃(x j,y j) : h(x j,y j) = h(xi,yi)

(x j,y j) = NeighborO f (xi,yi)

h(x j,y j) = 0 | Sca f f olding(x j,y j)

Effects : h(xi,yi) = h(xi,yi)+1

Cost =Cost +Cost(xi,yi)

B. Action Dependency Graph

We represent action preconditions in the problem formula-
tion by constructing an Action Dependency Graph(ADG)[10]
from the sequence of actions obtained from the high-level
plan. The final ADG is a Directed Acyclic Graph that may
be disjoint. In order to bring a new block into the world, the
robot must enter the world from a depot. In our formulation,
all cells outside the boundary act as depot locations. Since
our ADG only contains pick-up/delivery actions, visits to the

Algorithm 2: Allocate Tasks to N agents
Data: Action Dependency Graph G
Result: List of tasks allocated to each agent

1 TaskList = Topological Sort of G
2 Initialize t← 0, and all agents as “free” at all t
3 while TaskList not empty do
4 if any agent is free at time t then
5 Pop task from TaskList
6 For each free agent compute TaskTime
7 Allocate task to agent A with min. TaskTime
8 Set A not free for next TaskTime steps
9 end

10 t ← t +1
11 end

depot are added in the next step.

C. Task Allocation

We parallelize actions in the ADG to N agents as shown
in Algorithm 2 given the temporal dependencies of actions.
We prioritize within free agents based on an estimate of the
number of timesteps required to complete the action. This
estimate ignores agent-agent interactions.

EstimatedTaskTime = PathLength(start,goal)

Here, start and goal correspond to robot’s current location
and the location of the action to be assigned. In cases where a
robot needs to visit a depot before going to the next task, the
path from the previous task to a depot and then from a depot
to the next task is considered to obtain EstimatedTaskTime.

D. Path Planning

We formulate the remaining problem of finding paths for
multiple agents simultaneously as a multi-goal problem. For
a given pick-up/delivery location, the path found can be to
any of its neighbors in the 4-connected grid space. We use the
Multi-Label A* Algorithm [14] in a multi-goal problem with
temporal constraints on actions: action cannot be completed
until all actions it depends on are finished. This step provides
each agent with a collision-free path to complete all their
tasks, thus constructing the given structure.

V. RESULTS

A. Experimental Setup

We compare the performance of the hierarchical planner
on a set of six test structures in Fig 2 also considered in
baselines [1] [6]. The high-level plan is computed using
PDDL in Julia-1.6.7. Construction of dependency graph, task
allocation, and multi-agent path-finding are all implemented
in Python3. All computation is done on a 12th Gen Intel®
Core™ i5-1235U x 12 processor with 8GB RAM and 512
GB of disk capacity.

(a) Structures 1, 2 and 3

(b) Structures 4, 5 and 6

Fig. 2: Six test cases considered in baselines [1][6]

TABLE I: Comparison of the sum of costs with baselines

Structure Tree based [3] RL based [6] Exact Approach [1] Ours
1 1144 3040 173 181
2 836 1026 124 139
3 1590 3056 - 336
4 2120 3252 - 273
5 2180 2804 - 395
6 836 1276 160 162

B. Comparison with Baselines

We compare our approach with two existing sub-optimal
approaches and an optimization-based makespan-optimal ap-
proach and present the sum-of-costs in Table I. The Dis-
tributed Reinforcement Learning approach [6] runs a pre-
trained policy for 100 trials using 8 agents for each structure.
It takes around nine days of training to converge to the
final learned policy. Table I reports the average sum of
costs over successful trials. Heuristic-based approach [3]
uses a minimum spanning tree-based planning approach. In
comparison, our approach offers improvement of an order of
magnitude in the sum-of-costs compared to both approaches.
Optimization-based Exact Approach [1] uses a Mixed Integer
Linear Programming (MILP) based optimization model. The
model first minimizes makespan and then sum of costs for the
minimum makespan. We present the sum of costs in Table I
which is closely comparable to that of our approach for the
test structures. Table II presents data on their computation
time in comparison with our approach. Computation of the
high-level plan takes up more than 90% of this computation
time for majority of our experiments. For all cases here, we
enforce a run-time limit of 10,000 seconds for each structure
for our comparison. The exact approach violates this limit for
structures 3-5. Thus, our approach maintains solution quality
in terms of sum-of-costs without being computationally
expensive. We also achieve comparable makespans but skip
the discussion here for the purpose of brevity.

VI. CONCLUSIONS

We present a centralized, hierarchical planning approach to
the multi-agent collective construction problem. We provide
an order-of-magnitude improvement in computation time,
and maintain solution quality in the sum of costs as compared

TABLE II: Comparison of computation time with Exact
Approach

Structure Exact Approach (in s) Our Approach (in s)
1 1115 52
2 135 39
3 - 147
4 - 192
5 - 388
6 1715 116

to the time-optimal baseline approach. In the future we aim
to demonstrate scalability through refined methods. We also
aim generalize this solution to challenging variation of the
problem that include having heterogeneous block sizes or
robust planning that can handle uncertainty in completion
times.

REFERENCES

[1] Edward Lam, Peter J. Stuckey, Sven Koenig, and T. K. Satish Kumar.
2020. Exact Approaches to the Multi-agent Collective Construction
Problem. In Principles and Practice of Constraint Programming:
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium,
September 7–11, 2020, Proceedings. Springer-Verlag, Berlin, Heidel-
berg, 743–758. https://doi.org/10.1007/978-3-030-58475-7 43.

[2] Justin Werfel, Kirstin Petersen, and Radhika Nagpal. 2014. “Designing
Collective Behavior in a Termite-Inspired Robot Construction Team.”
Science, 343, 6172.

[3] Kumar, T.K.S. & Jung, Sangmook & Koenig, Sven. (2014). A Tree-
Based Algorithm for Construction Robots. Proceedings of the Inter-
national Conference on Automated Planning and Scheduling. 2014.
481-489. 10.1609/icaps.v24i1.13673.

[4] Petersen, Kirstin & Nagpal, Radhika & Werfel, Justin. (2011). TER-
MES: An Autonomous Robotic System for Three-Dimensional Col-
lective Construction. 10.15607/RSS.2011.VII.035.

[5] Werfel, Justin & Nagpal, Radhika. (2006). Extended Stigmergy
in Collective Construction. IEEE Intelligent Systems. 21. 20-28.
10.1109/MIS.2006.25.

[6] Sartoretti, G., Wu, Y., Paivine, W., Kumar, T.K., Koenig, S., &
Choset, H. (2018). Distributed Reinforcement Learning for Multi-robot
Decentralized Collective Construction. International Symposium on
Distributed Autonomous Robotic Systems.

[7] Trevor Cai, David Y. Zhang, T.K. Satish Kumar, Sven Koenig, and
Nora Ayanian. 2016. Local Search on Trees and a Framework for
Automated Construction Using Multiple Identical Robots: (Extended
Abstract). In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems (AAMAS ’16). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 1301–1302.

[8] Panangadan A, Dyer MG. Construction in a Simulated Environment
Using Temporal Goal Sequencing and Reinforcement Learning. Adap-
tive Behavior. 2009;17(1):81-104. doi:10.1177/1059712308101787

[9] Barros dos Santos, Sergio Ronaldo & Givigi, Sidney & Nascimento
Jr, Cairo. (2013). Autonomous construction of structures in a dynamic
environment using Reinforcement Learning. SysCon 2013 - 7th An-
nual IEEE International Systems Conference, Proceedings. 452-459.
10.1109/SysCon.2013.6549922.

[10] Hönig, W.; Kumar, S.; Cohen, L.; Ma, H.; Xu, H.; Ayanian, N.; and
Koenig, S. 2017. Summary: Multi-agent path finding with kinematic
constraints. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 4869–4873.

[11] Bechon, P., Barbier, M., Infantes, G., Lesire, C., & Vidal, V. (2014).
HiPOP: Hierarchical Partial-Order Planning. Starting AI Researchers’
Symposium.

[12] Knoblock, C.A. (1994). Automatically Generating Abstractions for
Planning. Artif. Intell., 68, 243-302.

[13] J. Hoffmann, “FF: The Fast-Forward Planning System”, AIMag, vol.
22, no. 3, p. 57, Sep. 2001.

[14] Grenouilleau, F., Hoeve, W.J., & Hooker, J. (2019). A Multi-Label A*
Algorithm for Multi-Agent Pathfinding. International Conference on
Automated Planning and Scheduling.

