## Framework for Optimizing Morphology and Mounted Pose of Modular Manipulators: A Drilling Task Case Study Maolin Lei<sup>1,2</sup>, Edoardo Romiti<sup>1</sup>, Arturo Laurenzi<sup>1</sup>, and Nikos G. Tsagarakis<sup>1</sup>

Maolin Lei<sup>1,2</sup>, Edoardo Romiti<sup>1</sup>, Arturo Laurenzi<sup>1</sup>, and Nikos G. Tsagarakis<sup>1</sup>

 name.surname@iit.it
 (1) Humanoids and Human Centered Mechatronics Research Line, Istituto Italiano Di Tecnologia (IIT) Genoa, Italy.
 (2) Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genoa, Italy

**Abstract:** Modular manipulators are an intuitive solution to the increasing need for mass-customized manipulation tasks in construction environment. Specifically, these manipulators, composed of multiple interchangeable body modules, enable rapid and reversible assembly into various morphologies. Task performance significantly depends on the manipulator's **mounted pose and morphology design**, therefore posing

the need of methodologies for selecting suitable modular robot configurations (M) and mounted pose ( $P_m$ ) that can address the specific task requirements and required performance.

## **Introduction:**

ΥΟΚΟΗΑΜΑ | ЈΑΡΑΝ

- Manipulation tasks were defined as trajectories in Cartesian space, consisting of a series of desired end-effector poses.
- **Model Predictive Control (MPC)** was utilized to control the robot in executing specified trajectories and to apply this controller in real experiments across varied morphologies.
- The execution's performance, assessed through **designated evaluation metrics**, is



then leveraged to evaluate and optimize different morphology and mounted pose.



## **Optimization and Experiments Results:**

CONCERT mobile modular manipulator equipped with a **10kg drilling end-effector continuously is able to executed drilling tasks at various locations**. Despite the heavy payload in executing such tasks and two drilling points close to the base link's horizontal level, the computational results still **ensure collision-free** with the mounted platform and **satisfy dynamic constraints** of the robot.

| <b>Optimization Objective</b>                         | Morphology | <b>Mounted Pose</b> | $[w_m, w_f]$ | M <sub>man</sub> | <b>F</b> <sub>eff</sub> |
|-------------------------------------------------------|------------|---------------------|--------------|------------------|-------------------------|
| maximizing manipulability and minimizing joint effort | C-1        | [-0.15, 0.21, 1.57] | [1.00,0.01]  | 0.41             | 198.7                   |
| solely maximizing manipulability                      | C-2        | [0.29, -0.03, 2.2]  | [1.00,0.00]  | 0.83             | 329.5                   |
| solely minimizing joint effort                        | C-3        | [0.13, 0.09, 1.57]  | [0.00,0.01]  | 0.35             | 186.6                   |





Acknowledge: This paper was supported by the European Union's Horizon 2020 Research and Innovation Program under Project CONCERT with grant number 101016007.