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Abstract— Most state-of-the-art robotic maps assume a static
world; therefore, dynamic objects are filtered out of the
measurements. However, this division ignores movable but non-
moving, i.e., semi-static objects, which are usually recorded in
the map and treated as static objects, violating the static world
assumption and causing errors in the localization. This paper
presents a method for modeling moving and movable objects to
match the map and measurements consistently. This reduces the
error resulting from inconsistent categorization and treatment
of non-static measurements. A semantic segmentation network
is used to categorize the measurements into static and semi-
static classes, and a background subtraction-based filtering
method is used to remove dynamic measurements. Experimental
comparison against a state-of-the-art baseline solution using
real-world data from the Oxford Radar RobotCar data set
shows that consistent assumptions over dynamics increase
localization accuracy.

I. INTRODUCTION

Most existing mapping methods assume that the mapped
environment does not change until the map is used for
localization. This is usually referred to as the static world
assumption. The assumption is made for simplicity, even
if it does not entirely hold. Violations of the assumption,
however, may result in errors in the localization.

For example, the map might contain containers, scaffold-
ing, or piled earth, which would be considered equally reli-
able landmarks compared to non-movable, i.e., static objects
such as buildings. If, during localization, another container
was observed in a different pose than the container on the
map that has since left, the potential incorrect match may
cause a localization error. This phenomenon is illustrated in
Figure 1.

To address this problem, many methods for removing
moving, i.e., dynamic, objects from the measurements have
been proposed [1]–[4], and it continues to be the most
common approach in the state-of-the-art localization and
mapping methods. This dichotomy between moving and non-
moving objects ignores objects that are movable while not
currently moving.

In this work, we show a better way: by distinguishing
between the properties of movability and motion, we can
properly model the dynamic classes: dynamic, semi-static,
and static. By consistently applying this distinction, we
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Fig. 1: Semi-static objects treated as static violate the static
world assumption and cause mismatches between the map
and the measurements. In this example, the map contains
a container, which has since been moved away. When the
robot returns, an observed container is offset from the one
on the map. This offset causes matching errors, especially
when the difference in poses is small or other features in the
direction of the error are lacking or sparse.

comply with not only the static world assumption but also
all our assumptions over dynamics.

We can partition the measurements into dynamic classes
by using semantic segmentation of laser point clouds and
background subtraction and clustering-based dynamic ob-
ject filtering. Using these filters to be consistent in the
assumptions over dynamics, we create a map containing
only static measurements and four localization methods,
each using measurements of different dynamic classes in the
localization. Using real-world data from real traffic scenarios
gathered over nine days; we show that localization under
consistent assumptions over dynamics increases localization
accuracy.

The main contributions of this paper are:

i) We propose a localization method using semantic seg-
mentation and dynamic filtering to remove non-static
measurements from the input measurements of the lo-
calization.

ii) We propose a mapping method using semantic segmen-
tation to remove non-static measurements to produce a
map compliant with the static world assumption.

iii) We show with an empirical study consisting of 112
localization experiments that the localization accuracy of
the baseline method can be improved using the proposed
mapping method to create a map consisting of only static
measurements and the proposed localization method.



II. RELATED WORK

A. Filtering dynamic objects

The most commonly used map type in mobile robotics is
the occupancy map. Occupancy maps incorporate the static
world assumption, as they do not model the dynamic proper-
ties of the contents of the cells. Therefore, the sensor model
cannot be adjusted to update the probabilities depending on
the dynamic properties of the measurement and the affected
grid cells.

To alleviate these problems, methods to filter dynamic
objects from the measurements have been proposed [1], [2].
Even if dynamic objects are filtered from the measurements,
unlike this work, none of these approaches distinguish be-
tween static and semi-static objects and subsequently leave
the semi-static objects in the map.

B. Representation of semi-static objects

Several methods have been proposed to address the issue
of semi-static objects being treated as static. Semi-static
objects have been represented as separate temporary maps
[5] with a given static map. While this is not done to create
a consistent representation of the environment but rather
to facilitate localization, this idea extends similar methods
that jointly localize the robot and estimate the state of the
environment, demonstrated multiple times with a door [6].

A step forward in representing the dynamic nature of the
environment is to model it as an Hidden Markov Model
(HMM) [7]. While an HMM models explicitly the belief
of occupancy and the transition probabilities of the envi-
ronment, which can be used to improve the localization
accuracy, unlike this work, there is no distinction between
dynamic or static cells.

Furthermore, the static world assumption is ingrained
into the Markov assumptions of independence of odometry
and observations. These assumptions have been relaxed
by partitioning the localization experiment into internally
Markovian episodes, but as a whole, they are not [8]. In this
work, we aim instead to maintain a consistent environment
representation.

While static objects are considered not movable, semi-
static objects are likely to move during the lifetime of a map.
Therefore, the probability of any object remaining stationary
reduces over time. This degree of staticness can be modeled
explicitly as the decaying probability of the persistence of
a feature [9]. Features are more naturally linked to object
instances that can be ascribed with a notion of staticness,
whereas we directly model the dynamic properties of the
entire spatial environment.

III. PROBLEM STATEMENT

The generic localization problem is defined as finding the
posterior distribution of p(xt|z0:t, u0:t,mt), where z0:t is the
sequence of sets of measurements z0:t = {z0, ..., zt}, and mt

is the current state of the environment.
In localization, we commonly use a previously created

map mtm ≈ mt, tm ≪ t0. However, this approximation
holds only for the static parts of the environment. To solve

the posterior through Bayes’ theorem, the problem is finding
a model of the measurement likelihood p(zt|xt,mtm), which
would take into account that semi-static and dynamic parts
of the environment might have moved.

IV. METHOD

A. Definitions

To model the dynamics of objects, two properties of dy-
namics need to be considered: movability (whether an object
can move) and motion (whether it is currently moving). The
categorization of unmovable and movable objects depends
on the context, e.g., buildings can get demolished. However,
we define unmovable objects as ones very unlikely to move
during the lifetime of the map. We assume that the movability
depends on the semantic label of the object.

We consider that objects can be separated into three
dynamic classes: static S, semi-static E , and dynamic D,
defining the classes in terms of movability and motion as

• Static objects: objects that are unmovable.
• Semi-static objects: objects that are movable but not in

motion.
• Dynamic objects: objects that are in motion.
We assume that movability is stationary over time; that

is, objects that are unmovable cannot become movable, and
vice versa. On the other hand, semi-static objects may start
moving and become dynamic. Additionally, we assume that
the dynamic properties are distinct and must be estimated
independently. Therefore, if an object is not in motion, its
movability cannot be inferred from that fact alone. These
assumptions are consistent with the real properties of ob-
jects. Therefore, we call these consistent assumptions over
dynamics.

B. Localization under consistent assumptions over dynamics

We propose to filter the measurements such, that the
used measurements are consistent with the assumptions over
dynamics. This enables likelihood estimation with consistent
assumptions over dynamics with any measurement model
and may be used in localization, mapping, or both.

The method consists of the following steps:
1) At time t, given the set of measurements zt, a dynamic

class diz is estimated for each measurement zit ∈ zt
using a function d(zit).

2) Using the acquired dynamic classes, a subset of mea-
surements z̃t ⊆ zt is selected such that it consists of
only the measurements belonging to a set of selected
dynamic classes δz .

z̃t = {zit ∈ zt : d(z
i
t) ∈ δz}

δz ⊆ {S, E ,D},

When the method is applied in localization, using the
acquired subset of measurements z̃, the original measurement
model p(z̃t|xt, m̃) comprises the given set of assumptions
over dynamics, defined by δz and δm. When the method is
used when building a map, it yields a map m̃ that consists of
only measurements of the selected dynamic classes δm. This



formulation has the benefit of leaving the definitions of the
function d(z), the map m, and the model p(zt|xt,m) open
for various implementations while enforcing constraints over
dynamics.

If the map is temporary, such as used in local collision
avoidance, and not to be reused when returning to the same
area, the assumptions differ, and therefore, semi-static objects
may be recorded into the map as they are static during
the lifetime of the map. However, in normal map-based
localization, only static measurements should be recorded
into the map, meaning using the selection δz = δm =
{S}, the localization is consistent over assumptions over
dynamics.

V. EXPERIMENTS

The two main questions we want to answer with the
experiments are:

1) Does the localization accuracy increase when the dy-
namic properties of the environment are better repre-
sented in the content of the map or the measurements?

2) Does the localization accuracy decrease over time from
map creation? Does this depend on the dynamic prop-
erties of the content of the map or the measurements?

To answer these questions, we performed a series of exper-
iments. We tested the proposed mapping method against the
baseline Normal Distributions Occupancy Map (NDT-OM).
We used two sequences from the data set to create two maps,
each with each method, for four maps. Four localization
methods were assessed using seven sequences for each map,
totaling 112 localization experiments.

A. Data set

The Oxford Radar RobotCar data set [10], [11] was used
in the experiments, which consists of 32 sequences from
seven different days over nine days where the same route
is traversed. Nine sequences were selected from the data set:
two for mapping and seven for localization, one from each
day of the data set. Measurements from the left Velodyne
32E laser and odometry were used as inputs.

The semantic segmentation was obtained using RandLA-
net [12], with a pre-trained model provided by the authors.
The model was trained using Semantic KITTI data set [13]
and therefore uses the labels from that set, which contain
separate labels for corresponding semi-static and dynamic
objects, such as a car and a moving car, but the network
could not reliably detect dynamic objects.

B. Filtering

We use two filters to implement the function d(z) for
partitioning the measurements into the dynamic classes.
A dynamic filter removes measurements originating from
dynamic objects. The filter removes the ground plane and
clusters the remaining points. The cluster centroids are
stored and associated with the cluster centroids of the subse-
quent measurement. The estimated movement of the cluster
centroids combined with the semantic labels was used to

TABLE I: The used localization methods

Name dynamic filter semantic filter δz
baseline - - {S, E,D}
filtered ✓ - {S, E}
static - ✓ {S}

combined ✓ ✓ {S}

determine whether the cluster represents a dynamic or non-
dynamic object.

Second, a semantic filter removes all measurements with
non-static semantic labels. We consider labels 40–99 from
Semantic KITTI as static.

C. Map creation

Two maps were created from two sequences, yielding a
total of four maps. The first map is the baseline NDT-OM,
created using all measurements. The map contains only static
and semi-static objects, as NDT-OM removes the dynamic
objects. The second map uses only static measurements using
the semantic label filter. Both maps were created using NDT-
OM fusion method [14] using ground truth poses of the data
set.

D. Localization

To study the effect of the selection of δz , we pre-process
the measurements using the filters presented in Section
IV-B and localize using Normal Distributions Transform
Monte-Carlo Localization (NDT-MCL) [15], creating four
localization methods, presented in Table I: one with each
filter, one without any filtering, and one with both filters.

E. Results

Several conclusions can be drawn from the results in terms
of Absolute Trajectory Error (ATE), which are presented in
Figure 2.

First, using the static map improves localization accuracy.
With all methods except static localization, using the static
map would be preferable as it reduces variance, improves
the mean, or both. With static localization, the difference
between the maps is negligible. This is likely due to the
nature of NDT registration, where only matches between
measurements and the map contribute to the cost. As there
is no cost for unmatched cells, it matters less if the measure-
ments are removed from the measurements or the map, as the
reduction in error is similar. These results indicate that the
static map increases performance in three of the four cases,
and in one case, the performance stays the same. As the static
map consists of only static measurements, this result concurs
with the hypothesis that having consistent assumptions over
dynamics increases localization accuracy.

Second, the filtering of the measurements during localiza-
tion also improves localization accuracy, as dynamic objects
may cause large-magnitude errors when incorrectly matched
with the map. Compared to the baseline localization, the
filtering methods have reduced mean, variance, or both,
making them more desirable choices.



TABLE II: Mean ATEs

localization type baseline map static map
baseline 2.8391 m 2.1629 m
filtered 2.2503 m 1.9615 m
static 2.1012 m 2.1342 m

combined 2.2414 m 1.8749 m
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Fig. 2: The experiment results. In the figure the sample
median is presented with a red line, and the blue box
represents the range between 25th and 75th percentile, i.e.,
the interquantile range. The black dashed line presents the
interval between the minimum and the maximum samples.
Values over 1.5 times the interquantile range are marked as
outliers, and displayed with a red plus symbol.

Third, in terms of variance, static localization performs
best. Whereas filtered localization can achieve very low
errors, the variance is higher than static localization. While
using more measurements is generally beneficial for localiza-
tion accuracy, the incorrect matching of semi-static objects
may cause errors. This makes the use of only static objects
desirable, as they are the most reliable landmarks.

Given the two main hypotheses: (i) using only static
measurements in the map and (ii) filtering the localiza-
tion input are both beneficial for the localization accuracy,
it should follow that the baseline localization with the
baseline map should be the worst-performing combination,
which can be seen from the results. As the baseline map
holds semi-static measurements and the localization uses
dynamic measurements, these can be incorrectly matched,
reducing performance. Therefore, the localization accuracy
is decreased by violating the consistent assumptions over
dynamics. Conversely, when the static map and the combined
method are used, the minimum ATE over all combinations
is achieved.

VI. CONCLUSION

In this work, we argue that more realistic assumptions over
dynamics are necessary. We showed that violating the static
world assumption increases the localization error in terms of
ATE due to the mismatch between the map and semi-static
or dynamic measurements treated as static. While the data
set in this work was gathered in a relatively static urban
setting, the proposed methods would likely be even more
useful in environments containing more semi-static objects,

such as a construction site. The results pave the way for new
interesting research topics. The use of more realistic models
of dynamics could enable localization in more challenging
environments where current methods fail. In this work, we
studied only localization accuracy, but the proposed methods
could improve performance in other critical application areas
of mobile robotics, such as mapping and path planning.

VII. ACKNOWLEDGMENTS

The image of the excavator and the container in Figure 1
was generated with ChatGPT.

REFERENCES

[1] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers, “Position Estima-
tion for Mobile Robots in Dynamic Environments,” AAAI/IAAI, vol.
1998, p. 6, 1998.

[2] D. F. Wolf and G. S. Sukhatme, “Mobile Robot Simultaneous Local-
ization and Mapping in Dynamic Environments,” Autonomous Robots,
vol. 19, no. 1, pp. 53–65, July 2005.

[3] J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “3D
normal distributions transform occupancy maps: An efficient repre-
sentation for mapping in dynamic environments,” The International
Journal of Robotics Research (IJRR), vol. 32, no. 14, pp. 1627–1644,
Dec. 2013.

[4] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-
niss, “SuMa++: Efficient LiDAR-based Semantic SLAM,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nov. 2019, pp. 4530–4537, arXiv:2105.11320 [cs].

[5] D. Meyer-Delius, J. Hess, G. Grisetti, and W. Burgard, “Temporary
maps for robust localization in semi-static environments,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Taipei: IEEE, Oct. 2010, pp. 5750–5755.

[6] D. Schulz and W. Burgard, “Probabilistic state estimation of dynamic
objects with a moving mobile robot,” Robotics and Autonomous
Systems, vol. 34, no. 2-3, pp. 107–115, Feb. 2001.

[7] D. Meyer-Delius, M. Beinhofer, and W. Burgard, “Occupancy Grid
Models for Robot Mapping in Changing Environments,” Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), vol. 26, no. 1,
pp. 2024–2030, Sept. 2021.

[8] J. Biswas and M. Veloso, “Episodic non-Markov localization: Reason-
ing about short-term and long-term features,” in 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). Hong Kong,
China: IEEE, May 2014, pp. 3969–3974.

[9] D. M. Rosen, J. Mason, and J. J. Leonard, “Towards lifelong feature-
based mapping in semi-static environments,” in 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). Stockholm,
Sweden: IEEE, May 2016, pp. 1063–1070.

[10] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km:
The Oxford RobotCar Dataset,” The International Journal of Robotics
Research (IJRR), vol. 36, no. 1, pp. 3–15, 2017.

[11] D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, “The
oxford radar robotcar dataset: A radar extension to the oxford robotcar
dataset,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Paris, 2020. [Online]. Available:
https://arxiv.org/abs/1909.01300

[12] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “Randla-net: Efficient semantic segmentation of large-
scale point clouds,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[13] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall, “SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences,” in Proc. of the IEEE/CVF
International Conf. on Computer Vision (ICCV), 2019.

[14] T. Stoyanov, J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Nor-
mal Distributions Transform Occupancy Map fusion: Simultaneous
mapping and tracking in large scale dynamic environments,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Tokyo: IEEE, Nov. 2013, pp. 4702–4708.

[15] J. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “Normal
distributions transform Monte-Carlo localization (NDT-MCL),” in
2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Tokyo: IEEE, Nov. 2013, pp. 382–389.


