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Abstract—This study addresses the challenges of robotic ma-
nipulation of amorphous materials in construction, particularly
shotcrete application, where high-velocity concrete spraying leads
to dust, low visibility, and occlusions. These factors contribute
to significant sensory noise and partial observability in 3D
visual inputs. We introduce a novel framework combining
uncertainty-aware 3D geometric visual input processing through
variational inference with deep reinforcement learning (DRL)
for ensemble policy learning. This approach enhances robustness
in noisy, partially observable environments, showing marked
improvements in completion time and material conservation
over traditional methods. Our results underscore the efficacy
of observational-uncertainty-aware DRL in addressing complex
real-world scenarios.

I. INTRODUCTION

Shotcrete, a process widely used in construction and mining
industries for stabilizing tunnels and slopes, involves pro-
jecting a stream of concrete onto a surface at high velocity
to manipulate the deposition of amorphous concrete material
[1]. The harmful dust and physical strain from shotcrete has
inspired growing interests in automating this task with robots.
But the amorphous nature of sprayed concrete makes it more
challenging to manipulate than rigid objects due to its com-
plex dynamics [2]. Real-world applications such as shotcrete
are even harder because sensory capability is impaired to
acquire visual observations in harsh working environments
filled with heavy concrete dust [3]. While the agent can
learn to shotcrete based on interactions with the environment
with the advances in end-to-end imitation learning (IL) and
reinforcement learning (RL), industrial shotcrete tasks do not
often allow mass data collection because physical interactions
between the robot and environment can be too costly and
unsafe. As a workaround, end-to-end RL has been widely
used in a sim-to-real setting, where a policy is first trained
in simulation and later transferred to the real world.

To achieve a successful sim-to-real transfer of the learned
policy, a suitable representation of visual input is essential.
While it is common to use raw sensory data without pre-
processing in end-to-end policy learning [2], [4], such an
approach proves inadequate to address several sim-to-real
gaps regarding shotcrete applications. Primarily, the presence
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of heavy concrete dust and occlusions from the plume can
significantly impair sensory functions, rendering the raw data
excessively noisy for meaningful extraction of 3D geometri-
cal features of concrete deposition. Additionally, real-world
industrial shotcrete processes demand online monitoring for
field operators to track task progress. This necessitates the
denoising and enhancement of raw data to yield semantically
understandable visual representations. Furthermore, the lim-
ited availability of real shotcrete data poses constraints on
learning complex representations directly from raw sensory
inputs. In this context, our work opts for heightmaps of
concrete deposition as the optimal visual representation to
bridge the sim-to-real gap effectively as it is simple enough
for simulation-based training yet sufficiently informative to
encapsulate critical 3D geometrical features, sensory noise,
and partial occlusions encountered in real-world scenarios.

Another major drawback of the sim-to-real transfer of
existing works in this domain is that they often overlook
observational uncertainty in their decision-making processes,
presuming the states to be almost fully observable [5]–[8].
Such assumptions are not viable for shotcrete applications,
where observational noise and partial occlusion not only exist
but can be predominant, overshadowing actual state changes.
Addressing this, our approach distinctively incorporates an
explicit estimation of observational uncertainty. This strategy
aims to derive a policy that demonstrates robustness against the
real-world challenges of sensory noise and partial occlusions,
ensuring reliable application in shotcrete tasks.

In summary, our paper presents two main contributions: (a)
we propose a novel RL algorithm that utilizes observational
uncertainty estimation to address the shotcrete problem; (b) we
show the uncertainty estimation method improves the perfor-
mance regarding completion time and material conservation.

II. RELATED WORK

A. Visual representation of amorphous material

In the realm of end-to-end policy learning for the manipu-
lation of amorphous materials, visual representations predom-
inantly manifest as latent forms derived from raw image data
[2], [4]–[8], yet these often overlook the complexities of occlu-
sions. This oversight may precipitate generalization challenges
when transitioning from the training domain to the target
domain. Efforts to address these challenges have been made,
such as tackling self-occlusions within the material via mesh
reconstruction [10], or adopting particle-based approaches for
dynamic modeling [11]. Despite these advances, a critical
gap persists: existing visual representations largely fail to
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account for sensory noise and external occlusions independent
of the material. Our approach, inspired by [12], utilizes a 2D
heightmap representation of concrete, chosen for its inherent
resilience to variations in concrete appearance. We go beyond
existing methodologies by creating a shotcrete simulator, based
on the model proposed in [13]. In this simulator, the concrete
deposition state is represented by the heightmap, and its
corresponding observations are rendered by adding sensory
noise and external occlusions derived from empirical data
collected during real-world shotcrete operations. We adopt the
same state representation in actual shotcrete applications by
converting stereo images into such heightmaps, facilitating a
direct, zero-shot application of policies trained in the simulator
to real-world environments.

B. Bridge sim-to-real gap

The concept of sim-to-real transfer of learned manipulation
policy is not novel in the domain of DRL. There have been
extensive works over an extended period [14]–[25]. Central to
these investigations is the interpretation of their foundational
principles from the standpoint of contextual Markov Decision
Processes (MDPs). This perspective allows for the assimilation
of simulated and real-world scenarios as singular RL prob-
lems, distinguished only by varying contextual parameters.
Pioneering efforts in this domain have leveraged recurrent
neural agents, employing domain randomization techniques
that modify transition dynamics, observations, or rewards.
Such approaches enable RL agents to construct and utilize
an internal latent memory, summarizing historical data to
facilitate the learning of adaptive, context-sensitive policies.

Transitioning these principles to construction robotics, es-
pecially shotcrete, reveals inherent limitations. While RL
agents are adept at inferring context from past observations
and reacting appropriately, the ’naive’ application of domain
randomization can falter in the face of excessively noisy ob-
servations and the profound uncertain dynamics characteristic
of partially observable environments. In such scenarios, the
agents may struggle to differentiate between contexts during
testing, leading to subpar generalization capabilities. Our work
addresses this issue by approximating the observational uncer-
tainty using variational inference to provide a reconstructed
true state given the observations. Futhermore, we use the
confidence of reconstructed states in bootstrap ensemble DRL
[26] to train an approximate Bayesian optimal manipulation
policy that shows sim-to-real robustness.

III. BACKGROUND

Contextual Reinforcement Learning (CRL) extends the stan-
dard RL framework to account for the effects of context in the
learning process. Here, sim-to-real transfer can be interpreted
as simulated and real-world scenarios with different contexts,
thus having different dynamics, observation probabilities and
reward functions. The CRL framework is represented by the
tuple (C,S,O,A, P,O,R, γ), where an agent interacts with
an environment across various contexts, aiming to maximize
cumulative rewards. Here, C is a finite set of contexts, S

denotes the state space, O represents the observation space,
A is the action space, P : C × S × A → P(S) is the state
transition probability function, O : C × S → P(O) is the
observation function, R : C × S × A → R is the reward
function, and γ ∈ [0, 1) is the discount factor.

In this context-aware and partially observable setting,
the policy π : C × O → P(A) maps contexts
and observations to a probability distribution over ac-
tions. The objective is to find an optimal policy π∗

that maximizes the expected cumulative reward, defined as
π∗ = argmaxπ Eτ∼π

[∑T
t=0 γ

tR(ct, st, at)
]
, where τ =

(c0, s0, o0, a0, . . . , cT , sT , oT , aT ) is a trajectory generated
under policy π, with each element ot ∈ O representing an
observation.

The inclusion of the observation space O is crucial for
dealing with environments where agents have access to only
partial observations of the state, a common scenario in real-
world applications. This formulation allows the agent to make
decisions based on limited information, learning to estimate
belief states and adapting its strategy accordingly.

In the next section, we discuss how to effectively estimate
actual states from noisy observations and how to achieve sim-
to-real transfer for the policy learned in simulation.
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Fig. 1. Uncertainty-Aware DRL using VAE

IV. METHODS

In this study, we propose an innovative ensemble deep
reinforcement learning framework, integrating a custom Vari-
ational Autoencoder (VAE) [27] with a Proximal Policy Op-
timization (PPO) [28] based actor-critic model. Our method
encompasses two core components: a tailored VAE for un-
certainty estimation via true state reconstruction from noisy
partial observations, and an ensemble approach that leverages
multiple learning agents to enhance decision-making robust-
ness.

A. VAE for state reconstruction and uncertainty estimation
from noisy, partial observation

The VAE architecture plays a pivotal role in our framework,
efficiently serving 3 purposes: feature extraction, state recon-
struction, and uncertainty estimation. An intuitive description
of the network architecture is shown in Fig. 1. The encoder
qϕ(zt|ot) is designed to process noisy, partially occluded

2



2D heightmap ot. It utilizes a series of convolutional layers
for image processing, followed by fully connected layers to
generate a latent representation zt, which is shared with the
policy and value networks of PPO.

The VAE decoder pφ(ŝt|zt), structurally mirroring the en-
coder, focuses on reconstructing the observation’s correspond-
ing true state estimate ŝt from zt. It comprises a sequence
of transposed convolutional layers that incrementally upscale
zt, culminating in the reconstruction of the shape of ot. The
observational uncertainty is approximated as the variance of
ŝt, computed by multiple samples of zt. The VAE is trained
by minimizing the reconstruction loss and KL-divergence
between the approximate posterior qϕ(zt|ot) and prior distri-
bution p(zt).

LVAE = −Ez∼qϕ(zt|ot)[log pθ(ŝt|zt)]
+β · KL[qϕ(zt|ot) || p(zt)]

(1)

B. Uncertainty-Aware Ensemble DRL Mechanism

We propose a novel architecture that orchestrates the train-
ing and interaction of multiple agents within an ensemble.
Each agent in the ensemble is instantiated with the cus-
tom VAE and an actor-critic model based on PPO. The
ensemble framework manages individual agent-environment
interactions. Agent-specific buffers store experience tuples
(st, ot, at, rt)D, facilitating independent learning while allow-
ing for cross-agent knowledge sharing. This design not only
encourages diversification in learned policies but also fosters a
cooperative learning environment, enhancing overall decision-
making robustness.

A distinctive feature of our framework is the ensemble
learning mechanism, which incorporates a novel approach
to policy calibration. Agents in the ensemble compute the
variance in their reconstructed states as a measure of certainty.
This variance informs the weighting of each agent’s policy
contribution to a collective decision-making process. Higher
certainty (lower variance) leads to a greater influence of an
agent’s policy on the ensemble’s combined policy.

The combined policy is formulated as a weighted sum of
individual policies, with weights inversely proportional to the
variance in reconstructed states. Subsequently, we compute the
KL-divergence between each agent’s policy and the combined
policy. This divergence serves as an additional loss term
during training, ensuring that individual policies do not diverge
significantly from the ensemble consensus, thus maintaining
a coherent and collaborative decision-making strategy across
the ensemble. Follow the theoretical framework of contextual
Markov decision processes (CMDPs), where simulation and
real-world environment are MDPs conditioned by different
contexts {ci, c ∈ C}. Our uncertainty-aware DRL framework
is shown in Algorithm 1.

V. EXPERIMENTS

This section delineates the experimental evaluation of our
proposed Uncertainty-Aware Proximal Policy Optimization

Algorithm 1 Uncertainty-Aware Ensemble PPO
1: Sample contexts {ci, i ∈ N} with replacement from C,

initialize policy θi, value ηi, and VAE network ϕi for each
ci

2: for each iteration do
3: Collect data {s, o, a, s′, o′}D using πi in ci
4: for each mini-batch B in D do
5: Compute LVAE,LPPO,LV

6: Compute confidence score σ2
t,i for each ot,i in ci

7: Compute imitated policy π =
∑N

i=1
πi

σ2
t,i

8: Compute uncertainty-aware loss LUA = DKL[π||πi]
9: Update θi, ηi, ϕi using L = LVAE+LPPO+LV +LUA

10: end for
11: end for

(UAPPO) against two baselines: the vanilla PPO and Model
Predictive Control (MPC).

A. Simulated shotcrete experiment

1) Setup In this study, UAPPO, PPO, and MPC algorithms
were tested in an OpenAI Gymnasium simulation, where
the objective was to apply shotcrete on a 2m x 1m flat
surface to achieve a 5cm target thickness. Any concrete
applied outside this area or beyond the target thickness
was considered waste.
Both UAPPO and PPO were trained using 2.4 million
transition samples {s, o, a, s′, o′}. The training involved
constant environmental transition dynamics, whereas the
evaluation phase presented the agents with variable dynam-
ics, ranging from 10% to 1000% of those in training. This
setup aimed to test the algorithms’ adaptability to diverse
and unforeseen scenarios.
The evaluation phase also featured a heightened challenge
by making the agents’ observations highly partially observ-
able. 80% of each observation’s information was masked,
simulating the limited information availability in real-world
conditions and testing the robustness of the policies under
such constraints.

2) Metrics Three metrics are used to evaluate performance:
completion time, computation time and wasted volume. To
mitigate the effects of stochasticity in the evaluation pro-
cess, the performance metrics of each agent are computed
from four repetitive validation trials.

3) Simulation Results The results presented in Table I indi-
cate that UAPPO outperforms other methods in terms of
completion time and material conservation, while MPC ex-
hibits the least favorable performance across all evaluated
metrics. This observation aligns well with our initial ex-
pectations. In contrast to PPO, the superior performance of
UAPPO can be attributed to its use of VAE for estimating
observational uncertainty, which not only aids in guiding
exploration during the training phase but also enhances
robustness during testing. Conversely, MPC is encumbered
by significant computational demands due to its reliance
on online optimization. To conform to the constraints of
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TABLE I
PERFORMANCE COMPARISON IN SIMULATION

Models UAPPO PPO MPC
Completion Time (s) 1985± 5 2035± 28 2057± 5
Computation Time (ms) 45± 12 48± 15 98± 15
Wasted Volume (m3) 0.0867± 0.004 0.0911± 0.015 0.0927± 0.003

real-time planning, MPC necessitates a reduction in the
planning horizon, subsequently diminishing its planning
efficacy.

VI. CONCLUSIONS

This paper introduced an innovative ensemble deep re-
inforcement learning framework, merging a custom VAE
with PPO. This dual approach effectively harnesses the
VAE’s capacity to distill high-dimensional sensory data into
meaningful latent representations, thereby enhancing state
representation in complex robotic tasks.
Our method elevates the decision-making capabilities of
individual agents in scenarios characterized by noisy and
partial observations, and it cultivates a collaborative dy-
namic through an ensemble learning mechanism. This sys-
tem minimizes individual policy deviations and promotes
collective behavior, aligning with a wisdom that aggregates
all policies in the ensemble, weighted by their respective
confidences.
The empirical results underscore our approach’s superiority
in learning efficiency and policy robustness compared
to traditional methods. The agents adeptly adapt to new
situations and make decisions based on highly uncertain
observations by utilizing the variance of reconstructed
states as a certainty measure. Despite its computational
demands and current limitations in sample efficiency and
scalability, the framework offers promising avenues for
future research, including exploring its application to larger
robotic swarms and the transferability of learned policies
across diverse tasks.
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