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Abstract— This paper presents a novel odometry framework
that utilizes the tight integration of forward and backward
RGB-D sensors to enhance environmental mapping and nav-
igation accuracy. We exploits the complementary capabilities
of binocular vision, tailored to maintain robust performance
in challenging environments such as indoor construction sites.
We introduce a new point selection algorithm that aligns with
the robot’s rotational direction, employing a motion-guided
point selection method to tightly integrate two cameras facing
different directions. This approach enhances the convexity
of the optimized residual, thereby bolstering the tracking
robustness. Additionally, we devise keypoints managing strategy
to effectively manage key points that exceed the detection
capabilities of RGB-D sensors, enhancing the thoroughness of
spatial mapping. Validation tests was performed on our mobile
robot platform.

I. INTRODUCTION AND RELATED WORKS

Estimating the robot’s pose and mapping is essential in
construction site areas. Primarily, Light Detection and Rang-
ing (LiDAR) and cameras are employed for this purpose.
While LiDAR provides accurate depth information, its high
cost represents a substantial hindrance. Conversely, cameras
are cost-effective and widely utilized. However, scale drift is
a common issue in Odometry tasks when using monocular
cameras. This challenge can be mitigated by implementing
stereo camera systems that calculate depth through triangu-
lation or by integrating inertial measurement unit (IMU) to
minimize scale drift. Additionally, employing RGB-D cam-
eras can effectively eliminate scale drift in Odometry tasks.
RGB-D cameras, which utilize stereo matching with in-
frared pattern light, provide precise depth measurements and
are cost-effective, enhancing their versatility. Consequently,
RGB-D cameras are frequently employed in Odometry and
simultaneous localization and mapping (SLAM) research.
Huang et al. equipped a drone with an RGB-D camera for
indoor mapping and navigation tasks. Furthermore, Whelan
et al. built on [3] and introduced a real-time visual Odometry
algorithm incorporating a GPU-based approach within the
RGB-D camera Odometry framework for comprehensive
mapping.

Yuan et al. enhanced the [5] by incorporating measured
depth images for initial depth assignment and subsequent
depth refinement. Nonetheless, these research exclusively
utilize monocular RGB-D cameras, which can suffer from
degraded tracking performance in the absence of valid points.
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Fig. 1: Odometry and Mapping Results of Our Approach: The
visualization features a point cloud delineated by a red boundary,
emanating from the frontal camera, juxtaposed with a point cloud
encapsulated by a blue boundary, originating from the rear
camera. This representation underscores the initial point
generation by the rear camera and its subsequent alignment upon
the robotic unit’s return.

This is particularly problematic in featureless environments
such as construction sites with ongoing internal construction,
where tracking failures may occur frequently (e.g., when a
robot faces a gray wall). To address this issue, we expanded
[4] to include a Multi-RGB-D camera system. Unlike stereo
cameras, RGB-D cameras can deliver accurate depth from a
single unit, rendering configurations with overlapping field
of view (FOV) unnecessary.

Consequently, we developed a system that optimizes the
utilization of data in Odometry by equipping RGB-D cam-
eras on both the front and rear of the robot, as depicted in
Fig. 1.

Analogously, Meng et al. introduced a trajectory estima-
tion pipeline that computes estimations from each of three
RGB-D cameras using a loosely coupled approach, updating
the pose for the camera with minimal error. Optimization
involves three separate estimators in this arrangement, poten-
tially increasing computational demands. Moreover, should
tracking failure arise in any single camera, re-initialization
is necessary.

Alternatively, our approach integrates the front and rear
RGB-D cameras through a tightly coupled strategy, creat-
ing a unified convex residual for optimization. To enhance
tracking accuracy and facilitate extensive mapping across a
broad FOV, we employed an adaptive point selection metric
considering the robot’s motion dynamics for both cameras.
The efficacy of the proposed method was confirmed via the
sensor system illustrated in Fig. 1, demonstrating that robust
trajectory estimation is feasible even without valid points in
indoor construction environments.



In summary, our contributions are as follows: We propose
a tightly coupled RGB-D Odometry system, illustrated in
Fig. 1, which incorporates both front and rear cameras
without an overlapping FOV. We also demonstrated improve-
ments in tracking performance, even under conditions of
feature scarcity in the images from front or rear cameras.

• We developed a new point selection algorithm that em-
ploys a motion-oriented gradient direction for achieving
a consistent convex direct-based optimized residual for
the tightly integrated RGB-D Odometry.

• We formulated a strategy for effectively handling key
points that fall outside the detection scope of RGB-D
sensors.

• We validated our proposed methodology using our
mobile robot platform, confirming the system’s practical
effectiveness.

II. METHODOLOGY

The framework of our system is depicted in Fig. 2. The
system comprises three primary modules: Initialization,
Tracking and Depth Refinement, and Back-end Optimization.
The initialization stage entails defining a world coordinate
system oriented along the direction of gravity, as measured
by an IMU. This stage also includes activating initial
points and estimating the initial pose (see Section 3-A).
The Tracking and Depth Refinement module is designed to
configure the residual and compute a coarse pose relative
to the latest keyframe by optimizing this residual. Then, it
detects point correspondences between consecutive frames
through direct-based matching and adjusts depth values(see
Section 3-B). Finally, the pose and point depth values are
refined using a keyframe-based sliding window approach
within the back-end optimization module (see Section 3-C).

A. Initialization
Initially, the direction of the gravity vector is established

by averaging the measurements from the IMU. Subsequently,
the world coordinates and the initial pose are established
by aligning the z-axis with the gravity vector. Subsequently,
the adaptive grid-based point selection metric is applied to
both the front and rear cameras following the methodology
outlined in [5]. Consequently, candidate points are identified
throughout the image based on the magnitude of their gra-
dients. If the depth measurements for these selected points
lie within an acceptable range (notably, between 0.105m and
20m for the Realsense D435i), such measurements are set to
their initial values during this selection phase. If the depth
value is invalid, it is assigned an infinite value. Next, the error
using solely the points with valid depth values is determined
when the next frame is coming in, as described below.
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The coordinate transformation Tk
i,j from frame i to frame

j involves multiplication with the inverse intrinsic matrix
Ki and projection using Kj . The normalization factor du,v

z′
u,v

adjusts the depth to ensure that the transformed coordinates
u′ and v′ are correctly scaled to the image plane of camera
j.

An approximate pose between the initial two frames is
estimated by optimizing the specified error. Subsequently,
utilizing the result of the estimated pose, points are projected
onto the jth image for depth refinement. Points that are not
matched correctly are projected onto the depth image, and
if the point is within the depth sensor’s measurement range,
the corresponding depth value is set.

Concurrently, the IMU measurements between successive
frames i and j are pre-integrated utilizing the approach
described in [7]. Subsequently, the discrepancy between
the pre-integrated pose and the tracked pose is defined
as the IMU Error. A sliding window optimization is then
conducted to refine the 6 degree of freedom (DOF) pose,
the depth of points, and the IMU biases.

B. Motion-guided points selction and Tracking
1) Motion-guided points selection: The convexity of

residuals, employed in visual tracking and back-end opti-
mization processes, is a fundamental component of deducing
the robot’s pose. In the direct-based approach, the residual’s
convexity is determined by the orientation of gradients at
points extracted from the image and the steepness of the
residual is influenced by the magnitude of the gradients
associated with the points utilized.

In the current methodology in [5], point selection involves
choosing candidates according to the magnitude of their
gradients. Points exhibiting arbitrary gradient directions are
selected by aligning them with the directional vector spec-
ified in the left graph of Fig. 3. However, this approach
does not incorporate the robot’s movement, and substantial
rotational movements may lead to diminished tracking per-
formance. Consequently, we endeavored to enhance tracking
performance by choosing points whose gradient direction
considers the robot’s motion. Additionally, points were adap-
tively selected from the images from both the front and rear
cameras.

Upon receiving a new frame, the angle of the motion
vector is calculated based on matched point pairs from the
most recent keyframe, referred to as the motion vector.
Subsequently, the interval of the direction vector previously
employed was narrowed. Additionally, as depicted on the
right side of Fig. 3, the reference vector was rotated by
the angle corresponding to the parallax vector, enabling
the selection of points with gradients perpendicular to the
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Fig. 2: Overview of the Proposed Methodology: This represents the framework of the Multi-RGB-D Inertial Odometry approach. Upon
the reception of color and depth images from both the frontal and rear cameras, points deemed relevant for robot motion are discerned
employing a motion-guided points selection metric. Subsequently, the tracking module endeavors to approximate the robot’s initial pose.
Following this, the refinement of point depth utilizing this estimated pose is executed, paving the way for bundle adjustment within the
back-end optimization module. This operation serves to jointly optimize both the pose parameters and depth values associated with the
identified points.

Fig. 3: This represents a directional vector utilized for the selection
of pertinent points in direct-based odometry. The depiction on the
left illustrates a directional vector encompassing the entire 360-
degree field, while the depiction on the right showcases a directional
vector with a gradient direction perpendicular to the motion of the
robot, as determined by the central red arrow.

direction of rotation. This process is executed adaptively
for both the front and rear camera images. Thus, if the
front camera images are deficient in points valid for the
direction of motion, additional points that consider motion
are selected from the images from the rear camera. Tracking
performance was enhanced by implementing a point
selection metric incorporating the robot’s motion across the
front and rear cameras.

2) Visual Tracking: The Visual Tracking module utilizes
an identical tracking methodology to that outlined in the
initialization module (1), where discrepancies are delineated
using activated points from the most recent keyframe of the
current frame. Nevertheless, in calculating the Jacobian con-
cerning the 6DOF pose, points activated by the rear camera
produce a distinct Jacobian compared to those recorded by
the front camera.

ri,j = ∥Ii(u, v)− ai,jIj(u
′, v′)− bi,j∥γ (3)

Where ri,j represents the residual between the latest
keyframe and the current frame, the Jacobian associated with
this residual, derived from points by the rear camera, was
modified in accordance with the pose of the front camera
using the following equation.

∂ri,j
∂δξF

= AdjTTRF

∂ri,j
∂δξR

(4)
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]
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Where, AdjTFR
denotes the adjoint matrix of extrinsic

parameter between front and rear camera. ξF denotes the
twist transformation associated with the front camera, while
ξR represents the twist transformation corresponding to the
rear camera. Among the points selected from both the front
and rear cameras, solely those points that exhibited valid
measurement values derived from the depth image were
utilized to formulate a residual. Subsequently, the coarse pose
corresponding to the front camera was estimated by optimiz-
ing (3). Based on the coarse pose, the depth value was refined
by searching the epipolar line to establish correspondence.
Concurrently, points without depth refinement—specifically,
low-quality—were assigned the corresponding value from
the depth image. Subsequently, analogous to the methodol-
ogy described in [8], the measurement residual about point
depth and the residual derived from tracking are propagated
to the back-end optimization module. Finally, these resid-
uals are added to the pre-integrated IMU residual, and the
keyframe-based optimization is performed.

III. EXPERIMENT

A. Experimental Setup
To assess the effectiveness of the proposed method,

tightly coupled Multi-RGB-D odometry, a dataset was
generated utilizing the system depicted in Fig. 1. This
setup comprises front and rear RGB-D cameras, precisely
two Intel-Realsense D435i cameras, and a Microstrain
3DM-GX5-25 IMU. LiDAR SLAM results were used as
the ground truth to provide a reliable baseline for trajectory
estimations and data was collected using a Jetson Orin from
Nvidia.

B. Comparison
The efficacy of the proposed algorithm was assessed

against two state-of-the-art algorithms, [9] (RGB + IMU)
and [10] (RGB-D + IMU), using [11]. The evaluation
metrics included root mean square error (RMSE) across
four dimensions: Absolute Translation Error (ATE), Absolute
Rotation Error (ARE), Relative Translation Error (RTE), and
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Fig. 4: Qualitative Evaluation of Trajectory: The presented illus-
tration depicts the plotted trajectory of the proposed methodology
alongside that of the comparative group. Ground truth trajectory was
derived via LiDAR-Inertial SLAM and exhibits superior conver-
gence to the ground truth compared to the methodologies referenced
as [9] and [10].

TABLE I: Quantitative comparative evaluation of the pro-
posed methodology: Assessed via Root Mean Square Error RMSE
measures, comprising Absolute Translation Error ATE, Absolute
Rotation Error ARE, Relative Translation Error (RTE), and Relative
Rotation Error RRE.

Sequence 1 Vins Mono[9] ORB SLAM3[10] Ours(Front only) Ours

(ATE)Rotation 2.79 3.42 2.66 2.13
(ATE)Translation 1.27 0.36 0.37 0.33
(RTE)Rotation 3.96 3.94 3.55 3.45
(RTE)Translation 2.47 0.53 0.63 0.52

Relative Rotation Error (RRE). All evaluation tests were
conducted within a Ubuntu ROS environment, utilizing an
Intel i9-11900 CPU and 64GB RAM. Table. I details the
error metrics for [9], [10], Ours using only the front camera,
and Ours integrating both front and rear cameras. The
experiments covered approximately 28 meters in an indoor
setting. As shown in Table. I, our methodology outperformed
both [9] and [10] in all evaluated metrics. The integrated
method of front and rear camera data resulted in enhanced
performance compared to using only the front camera. This
improvement is linked to the situations illustrated in Fig. 1,
where the lack of suitable 6DOF residual-forming points in
the front image required the inclusion of points from the rear
camera to enhance the convexity of the residual during the
optimization process. Fig. 1 visually represents the estimated
trajectory used in the study, with our results showing closer
alignment with the ground truth.

IV. CONCLUSION

This paper presents a Multi-RGB-D Camera Direct In-
ertial Odometry system. It showcases its robust tracking
capabilities in environments with sparse features through
the integrated fusion of front and rear RGB-D cameras.
The research introduces a novel point selection metric that
facilitates a convex of the optimization error by employing
a motion-guided point selection metric. Adaptively selecting
corresponding points across the front and rear cameras using
the points selection method, we can empirically confirm

that the proposed system produces a convex residual in
environments lacking distinct features, such as construction
site environments. Our proposed framework exhibits superior
performance metrics compared to leading-edge methodolo-
gies, particularly VINS-Mono [9] and ORB SLAM3[10].
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