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AM-Align: Globally Optimal Estimation of
Accelerometer-Magnetometer Misalignment

Xiangcheng Hu, Jin Wu, Bohuan Xue, Yilong Zhu, Mingkai Jia, Yuhua Qi, Yi Jiang, Ping Tan and Wei Zhang

Abstract—Construction robots require accurate sensing of their own
localization information for precision perception, actuation and control.
The calibration of the accelerometer-magnetometer combination is a
vital step to guarantee accuracy for estimating position and attitude.
Previously, the misalignment (extrinsic) calibration between the ac-
celerometer and magnetometer has been significantly studied. However,
these algorithms require sufficient and outlier-free data to guarantee
a satisfactory initial guess for further optimization. In this paper, a
novel globally optimal method, AM-Align, is developed to solve this
problem. The proposed method is independent of an initial guess
and robust in insufficient data and outliers. To achieve this goal, all
global optima are sought by finding the solution set with the least
loss function values using the polynomial eigenvalue method. Simulation
studies show the complete solution set of the minimal case of the studied
problem. Experimental results verify the superiority of the proposed
scheme against previous representative candidates, showing that AM-
Align requires fewer measurements and has higher accuracy together
with good robustness.

Index Terms—Accelerometer, magnetometer, sensor alignment, sensor
calibration, attitude estimation

I. INTRODUCTION

BUILDING up highly accurate integrated navigation system is
of great significance in construction robots. Accelerometers and

magnetometers are crucial components in modern sensor systems,
providing cost-effective solutions for attitude estimation in various
applications, such as robotics, aviation, and automotive systems [1].
These sensors enable accurate navigation in complex environments
by leveraging accelerometer readings for tilt angles and magnetome-
ter data for heading relative to the Earth’s magnetic north. The
widespread adoption of micro-electro-mechanical-system (MEMS)
technology has made these sensors small, low-cost, and flexible.
However, the accuracy of MEMS sensors depends heavily on proper
calibration. Arising from misalignment errors during sensor integra-
tion, the accelerometer-magnetometer alignment (AMA) problem has
been extensively studied in recent years. While traditional approaches
often rely on costly equipment, making them impractical for field
applications and consumer-level products. Zhang et al. [2] propose
a quaternion-based Kalman filter with vector selection for accurate
orientation tracking, considering sensor misalignment and calibration
parameters. Vasconcelos et al. [3] present a geometric approach for
strapdown magnetometer calibration in the sensor frame, estimating
the misalignment between the magnetometer and inertial sensor
axes. Wu and Shi [4] introduce a calibration method for three-
axis magnetometers that estimates sensor biases, scale factors, and
non-orthogonality using a maximum likelihood estimator. Sotiriadis
et al. [5], [6] address the problem of orientation sensor fusion
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and calibration for motion tracking in mobile devices, proposing
a fusion algorithm that combines data from accelerometers, gyro-
scopes, and magnetometers while considering their misalignment and
calibration parameters. Despite the progress made in accelerometer-
magnetometer alignment, several challenges and limitations persist:

• Initialization dependency: Many existing alignment methods
rely on a good initial guess of the transformation between the
accelerometer and magnetometer frames, which can lead to
suboptimal solutions or divergence if poorly initialized.

• Robustness to noise and outliers: Magnetometer data, sus-
ceptible to environmental magnetic disturbances, require robust
calibration and alignment to mitigate noise and outliers.

• Computational complexity: AMA algorithms demand intensive
computations, including optimization and matrix operations,
challenging their implementation on devices with limited com-
putational resources.

This paper focuses on addressing these limitations by emphasizing:
1) We propose a globally optimal method for solving the

accelerometer-magnetometer alignment problem, independent of
initial guess and robust to insufficient and outlier-corrupted data.

2) By exploiting the algebraic structure of the sensor measurement
models, we formulate the alignment problem as a constrained
least-squares optimization in unit quaternion space. This prob-
lem is further reduced to a system of multivariate polynomial
equations, which is solved efficiently using the polynomial
eigenvalue technique.

II. PROBLEMS AND SOLUTION

For a vector-field sensor, the raw readings can be modeled as
follows vb = SRvr + bv + ϵv , where vb and vb are 3-D vector
measurements in the body frame and reference frame respectively;
S ∈ R3×3 stands for the calibration matrix that takes scale factor and
nonorthogonality into account; R is the rotation matrix in the special
orthogonal group SO(3) :=

{
R ∈ R3×3

∣∣R⊤R = I, det(R) = 1
}

;
bv and ϵv ∼ N (0,Σv) denote the constant bias and stochastic
noise term respectively. The noise covariance matrix can typically
be modeled as isotropic one Σv = γ2I in which γ stands for
the variance or noise level. In this paper, r-frame is the North-East-
Down (NED) reference frame. The intrinsic calibration problem of
vector-field sensor is to estimate unknown parameters S,R, bv and
sometimes, vr, with given measurements of vb. For accelerometer, vr

is known and can be set to vr = (0, 0, 9.8)⊤ m/s2 in the NED frame.
For magnetometer, however, since vr is the function of local geodetic
coordinates, vr should be estimated as well. Intrinsic calibration of
magnetometers has been extensively studied. Thus, the practitioners
can employ methods e.g. [4], [7], [8] for ad-hoc calibration prior to
a specific use. Misaliangment estimation is detailed in the following.

A. Proposed Misalignment Calibration

After a proper intrinsic calibration procedure, the accelerometer
and magnetometer in the non-distorted condition have the following
measurements related by the rotation matrix R ∈ SO(3):

ab = Rar, mb = Rmr (1)
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in which ab and mb are normalized measurements in the body
frame from the accelerometer and magnetometer respectively; ar =
(0, 0, 1)⊤ and mr = (mN, 0,mD)

⊤ denote the corresponding nor-
malized vectors in the NED frame while mN and mD are components
in the North and Down directions, respectively. A fact in these sensor
models is that

ab ·mb = (ar)R⊤Rmr = ar ·mr (2)

which is the dot-product equality for attitude determination from two
vector observations, which has been extensively adopted in calibration
and attitude determination [9]–[11]. Expanding (2) gives

ab ·mb = ∥ar∥ ∥mr∥ cos θ = cos θ (3)

where θ is the local magnetic dip angle. For common accelerometer-
magnetometer combinations, the alignment between the two sensors
may not be refined. Therefore, when using the two sensors for attitude
estimation, the frame misalignment between them must be deter-
mined. Denoting the rotation from magnetometer to accelerometer as
Ra

m, it is able to relate the measured normalized magnetic field m̃b

in magnetometer frame and corresponding mb in the accelerometer
frame by mb = Ra

mm̃b. Therefore (3) becomes

ab ·mb =
(
ab

)⊤
Ra

mm̃b = cos θ (4)

From (4), one can observe that there are two unknowns i.e. Ra
m and

θ. Thus the task of the accelerometer-magnetometer alignment is to
estimate Ra

m and θ from multiple-position measurements of ab and
mb in a simultaneous manner. The kernel optimization is expressed
as follows

argmin
Ra

m∈SO(3),θ∈R
L =

∑
i∈I

[(
ab
i

)⊤
Ra

mm̃b
i − cos θ

]2

(5)

in which i denotes the sample index of accelerometer and mag-
netometer measurements while I indicates all indices of available
inliers. Optimization (5) can be interpreted as

argmin
Ra

m∈SO(3),s∈R
L =

∑
i∈I

[(
ab
i

)⊤
Ra

mm̃b
i − s

]2

, s.t. |s| ≤ 1 (6)

where s = cos θ. In [5], an analytical algorithm is designed to
compute closed-form approximation of Ra

m and s from (6). Then
gradient-descent algorithm is applied to solve a refined solution from
the closed-form initial guess. The method in [5] is practical and
accurate but can only be feasible in the condition that a matrix
A stacked in rows by m̃b

i ⊗ ab
i for i ∈ I is of full rank. If A

is rank-deficient, the estimated approximation of vec (Ra
m) will not

be a proper initial guess and may diverge to a local minimum in a
further gradient-descent search. To guarantee the rank of A, at least 9
different pairs of measurements are required. However, from (6), one
can conclude that Ra

m and s are observable in the condition that there
are at least four pairs of measurements. This is because the rotation
matrix Ra

m has three degrees of freedom. This paper solves the
problem (6) without a closed-form initial guess, but rather by using
the Gröbner-basis method, the global optimum can be sought with
high accuracy. Choosing qa

m as the quaternion of Ra
m, it is able for us

to write the gradient of L as ∇yL = ∂L
∂y

, where y =
[
(qa

m)⊤ , s
]⊤

.
All local minima and maxima occur in the condition of ∇yL = 0.
By extending ∇yL = 0, one obtains

s =
1

N
∑
i∈I

(
ab
i

)⊤
Ra

mm̃b
i (7)

Inserting (7) into the original objective L gives a new optimization
objective L̂ without s, say argmin∥qa

m∥=1 L̂ (qa
m). The optimization

can be solved by constructing the Lagrangian, such that L̃ =

L̂ + λ
[
(qa

m)⊤ qa
m − 1

]
, where λ is the Lagrange multiplier. The

quaternion and Lagrange multiplier can be sought by means of

∇ζL̃ = 0 (8)

where ζ =
[
(qa

m)⊤ , λ
]⊤

. This will construct a polynomial system
of 5 sub-equations. Each equation has different sets of monomials.
The first 4 sub-equations are essential for the solution of qa

m. And the
rest is simply the quaternion unit norm condition. If we parameterize
quaternion as qa

m = (q0, q1, q2, q3)
⊤, the first 4 sets of monomials

can be summarized as quadratic 21 monomials of q0, q1, q2, q3 and
λ. The coefficients rely on input measurements, whose analytical
forms can be given by symbolic engines of mathematical software
like Python SymPy or Mathworks MATLAB. From these monomials,
we can see that they have common parts, but are not the same for the
rest parts. All these monomials form a cubic polynomial system to
be solved. To obtain all local minima of qa

m, one needs to solve all
solutions of qa

m and λ. This indicates that we are dealing with a 5-
variable cubic polynomial system. There is no closed-form solution to
such a high-order polynomial system, according to the Abel-Ruffini
theorem [12]. However, by using Bezout’s theorem [13], we can
obtain the maximum solution count of this system, i.e., it has at
most 5 × 4(3 − 1) = 80 distinct solutions. Although according to
Bezout’s theorem, we have concluded that our system to be solved has
at most 80 distinct solutions, since one quaternion and its negative
represent the same rotation, there are at most 40 solutions to be
found. Note that not all these 40 solutions are in the real space.
Therefore, only real solutions will be considered, which normally
covers 4 ∼ 16 real solutions in engineering practice. After all real
local quaternion critical points are obtained, inserting them back
into (7) gives multiple s = cos θ. Then, inserting these quaternions
along with s critical points back into the original objective function
L produces a number array, with which we obtain the globally
optimal solution corresponding to the least objective function value
after a typical sort algorithm. We use the polynomial eigenvalue
solution to solve all possible solutions for this system [14]. The
polynomial eigenvalue method is a rigorous mathematical approach
for solving systems of polynomial equations of the form f(x) = 0,
where f is a polynomial function and x is an unknown vector.
The generalized eigenvalue problem associated with the polynomial
system f(x) = 0 is given by Hϱ = µGϱ, where µ ∈ K is an
eigenvalue and ϱ ∈ Kk is a corresponding eigenvector. The solutions
to the polynomial system can be obtained from the eigenvectors ϱ
by considering the appropriate components that correspond to the
original variables x. In this work, we use MATLAB mupad symbolic
engine to derive the symbolic manipulation of constructing matrices
H and G. Specifically, we use equationsToMatrix function
to extract coefficients for H and G. All the coefficient extraction
works are conducted offline. Thus, the actual execution speed of the
algorithm is fast in practice. Finally, the QZ algorithm in Eigen
library is used for C++ implementation.

III. EXPERIMENTAL RESULTS

A. Numerical Example: Minimal Case

When we have N ≥ 4 pairs of accelerometer-magnetometer
measurements, the polynomial system in (8) becomes solvable. Fig. 1
shows a minimal configuration of sensor placements. However, when
exactly N = 4, which is the minimal case of the studied problem,
it can be empirically obtained that there are at most 6 ambiguous
optimal solutions of a total of 40 distinct ones simultaneously
satisfying the polynomial system. Sometimes, the minimal system
has 4 ambiguous optimal solutions, which depend on the parameter
configuration. We call this phenomenon the mirror effect of the
solutions. If N = 5, the 5-th pair of measurements helps with
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Fig. 1: The minimal sensor placements required for AM-Align. The
red, green, and blue axes denote the Euler angles in roll, pitch, and
yaw, respectively. Only 4 different poses are needed for a complete
calibration, which is less than that in existing representatives.

Fig. 2: The error statistics of AM-Align with increasing N . All cases
are convergent.

verifying which of the ambiguous solutions is correct. To be clear,
we present here a numerical example showing how the system is
solved in the minimal case. We simulate the true misalignment
rotation as Ra

m,true with cos θtrue = 0.861311153421915, which
denotes a position in the Northern hemisphere. The normalized
accelerometer and magnetometer measurement pairs are simulated
using model (1) with the noise level of γ = 10−3 for accelerom-
eter with a unit of m/sec2 and for magnetometer with a unit
of Gauss, as ab

1 ,a
b
2 ,a

b
3 ,a

b
4 ,m

b
1 ,m

b
2 ,m

b
3 ,m

b
4 . with which we

construct the optimization kernel and is later solved using AM-
Align. The proposed algorithm returns 6 pairs of distinct real so-
lutions, see https://github.com/JokerJohn/AM_Align/
blob/main/suppl.pdf. It can be seen from the results that the
2-nd pair of solutions Ra

m,2 is the correct one. Commonly, the correct
solution can also be deduced via the cos θ value according to the local
geodetic position.

Multiple Monte-Carlo simulations are performed with different
numbers of measurements for AM-Align and the existing method

Fig. 3: The error statistics of the method by Papafotis et al. with
increasing N . The dashed boxes denote the divergent estimates when
N < 9.

Fig. 4: The error statistics of various algorithms when N = 9, in
which ψ denotes the error metrics of either εRa

m
or εcos θ . Still, AM-

Align has better estimation accuracy.

[15]. We simulate over 10000 samples for each case with different
N and noise levels γ and get mean results. The error metrics are
εRa

m
=arccos 1

2
tr(Ra

mR⊤
true)− 1 and εcos θ= | cos θ − cos θtrue|.

The results are shown in Fig. 2 and 3 respectively. The results
indicate that AM-Align requires less numbers of measurements. We
also inspect the error results of various candidates when N = 9,
which are depicted in Fig. 4. The results also indicate that the
proposed method, according to its globally optimal nature, has better
estimation accuracy than the compared representative.

B. Hardware Synthesis

AM-Align is implemented on an unmanned aerial vehicle plat-
form where the inertial measurement unit and magnetometer are
synchronized using hardware clocks and impulses. We first perform
an intrinsic calibration task for the magnetometer using the Rieman-
nian method proposed recently [16], guaranteeing that all external
magnetic-field distortions and disturbances are eliminated. After that,
AM-Align is used for misalignment calibration. We compare the dot
product

(
ab

)⊤
mb before and after the calibration (see Fig. 6). The

https://github.com/JokerJohn/AM_Align/blob/main/suppl.pdf
https://github.com/JokerJohn/AM_Align/blob/main/suppl.pdf
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IMU and Magnetometer

Vicon Cameras

Vicon Markers

Fig. 5: The unmanned aerial vehicle platform used for hardware
synthesis and verification. The platform is tested in a laboratory with
Vicon motion-capture ground-truth system.

Fig. 6: The
(
ab

)⊤
mb values before and after the calibration using

the proposed globally optimal method.

results indicate that AM-Align is effective with the in-field robot as
it significantly increases the consistency of

(
ab

)⊤
mb, which is the

kernel metric for evaluation of the calibration.

Fig. 7: The employed construction robot cooperated with Transforma
Robotics, PTE, Ltd., Singapore, for validation of state estimation ac-
curacy using AM-Align calibrated accelerometer and magnetometer.

The proposed AM-align method has been deployed on a construc-
tion robot product that we cooperated with Transforma Robotics,
PTE, Ltd., Singapore, as shown in Fig. 7. In prototyping stage,

We employ the renowned ECL library for robot state estimation
in PX4 autonomous systems1, which consists usage of IMU and
magnetometer as sensor inputs. We compare the attitude accuracy
with the ground truth device MTi-G-710 that is rigidly attached to
the body of the robot. The results show that the attitude error of the
robot has been lowered from an average of 2.755 deg to 1.603 deg,
which verifies the efficacy of the proposed method.

IV. CONCLUSION

This paper presented a globally optimal method for estimating
the misalignment between an accelerometer and a magnetometer.
The proposed AM-Align formulates the alignment problem as a
constrained least-squares optimization in unit quaternion space, which
is reduced to a system of multivariate polynomial equations and
solved efficiently using the polynomial eigenvalue technique. Ex-
periments demonstrate that our algorithm outperforms state-of-the-
art methods in terms of accuracy and robustness under various
conditions. Future works include developing simultaneous intrinsic
and extrinsic calibration for accelerometer and magnetometer via
minimum trajectory configuration of sensor motion.
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