
VINS-Multi: A Robust Asynchronous Multi-camera-IMU State
Estimator

Luqi Wang, Yang Xu and Shaojie Shen

Abstract— State estimation is a critical foundational module
in robotics applications, where robustness and performance
are paramount. Although in recent years, many works have
been focusing on improving one of the most widely adopted
state estimation methods, visual inertial odometry (VIO), by
incorporating multiple cameras, these efforts predominantly
address synchronous camera systems. Asynchronous cameras,
which offer simpler hardware configurations and enhanced
resilience, have been largely overlooked. To fill this gap, this
paper presents VINS-Multi, a novel multi-camera-IMU state
estimator for asynchronous cameras. The estimator comprises
parallel front ends, a front end coordinator, and a back end
optimization module capable of handling asynchronous input
frames. It utilizes the frames effectively through a dynamic
feature number allocation and a frame priority coordination
strategy. The proposed estimator is integrated into a cus-
tomized quadrotor platform and tested in multiple realistic and
challenging scenarios to validate its practicality. Additionally,
comprehensive benchmark results are provided to showcase the
robustness and superior performance of the proposed estimator.

I. INTRODUCTION

State estimation serves as a fundamental component within
robotic applications, underpinning higher-level tasks with
essential support. Therefore, the robustness and concision
of the system are required during practice. A lot of recent
research has concentrated on enhancing the performance
and resilience of visual-inertial odometry (VIO), one of the
predominant methods utilized for state estimation [1]–[3].

An intuitive and effective scheme for enhancing VIO
involves the incorporation of additional cameras to cover
different directions, thereby acquiring more information
from the surrounding environment [4]–[6]. Most of the
works primarily investigated the use of synchronous cam-
eras, which necessitate auxiliary hardware triggering mech-
anisms. However, practically, numerous cameras lack the
hardware synchronization capability and systems reliant on
synchronous cameras often succumb to malfunctions induced
by faulty trigger signals or partial camera failures, which
stem from design or technical issues. Hence, during some
real applications in demanding environments, for instance
wilderness and construction sites, deploying multiple asyn-
chronous cameras can be less cumbersome and offer superior
robustness against failures. Although [7] has explored the
use of multiple asynchronous cameras on a driving dataset,
the approach combines asynchronous frames as multi-frame
batches and approximates the states by a B-spline trajectory

All authors are with the Department of Electronic and Com-
puter Engineering, Hong Kong University of Science and Technol-
ogy, Hong Kong, China. {lwangax, yxuew}@connect.ust.hk,
eeshaojie@ust.hk.

(a) Vent pipe case 1. (b) Visualization of vent pipe case 1.

(c) Vent pipe case 2. (d) Visualization of vent pipe case 2.

Fig. 1. The deployment of VINS-Multi in aerial vent pipe inspection
scenarios. The green lines are the estimated trajectory and the white arrows
indicate the estimated odometries. The maps are constructed during the
flights and the color code indicates the height.

for interpolation, which typically loses degrees of freedom.
To circumvent this limitation, the incorporation of an inertial
measurement unit (IMU), a commonly adopted sensor in
robotics, can be a simple and effective solution. As a result,
we propose the VINS-Multi, an asynchronous multi-camera-
IMU state estimator developed from our previous work [3, 8].

The contributions of this paper are the following:
1) We design a novel dynamic feature number allocation

alongside a frame priority coordination strategy to
efficiently handle the asynchronous frame inputs.

2) We combine a parallel front end and a front end
coordinator based on the proposed strategy, as well
as a sliding window optimization module into a robust
multi-camera-IMU state estimator that can accommo-
date multiple asynchronous cameras of mixed types.

3) The estimator is integrated into a quadrotor platform
for extensive experiments in realistic and challenging
scenarios, and the benchmark results are presented.

II. METHODOLOGY

The entire system architecture is depicted in Fig. 2. The
images, accompanied by depth if using RGBD cameras, are
sent to the visual front ends and the processed measurements
are subsequently coordinated by the front end coordinator.
The coordinator dynamically redistributes the number of
features processed by each front end based on the collected
features, as well as determines whether the measurements are



Fig. 2. The system architecture of the proposed state estimator. Note that
the camera modules can be of mixed types.

forwarded to the sliding window in the back end optimization
module according to the priority. The back end obtains the
visual and depth measurements, as well as the pre-integration
results from the raw IMU input to output the camera and
IMU rate odometries at 30 and 500 Hz after optimization.

A. Front End

The visual front end adheres to a standard procedure which
includes feature detection, tracking and outlier rejection,
similar to the methodologies established by VINS-Mono
[3] and VINS-Fusion [8], while the front ends are running
in parallel with each front end thread handling a separate
camera module. The extracted visual measurements, along
with the corresponding depth measurements (when using
RGBD cameras), are firstly sent to the front end coordinator
preceding the back end optimization. The IMU front end
performs pre-integration and directly outputs the high rate
odometry based on the latest optimization results.

B. Front End Coordinator

1) Feature Number Allocation: Considering the different
feature qualities caused by the varying captured scenes from
cameras facing distinct directions , it is inefficient to treat the
cameras equally. To make effective use of the computation
resources, the maximum extracted feature number from
images of each camera is dynamically allocated according
to the scene. In particular, given the total maximum feature
number FN we allocate fni features for camera i according
to the tracked feature number from the last frame tfni:

fni =
tfni

N∑
i=0

tfni

FN. (1)

Note that by dynamically adjusting the maximum feature
number of each camera, the feature tracking rate will con-
verge to the same across the cameras, meaning that when
a front end has high feature tracking rate, larger maximum
feature number will be allocated to it.

2) Frame Priority Coordinator: Since in some scenarios,
not all the frames are necessary to be inserted into the
sliding window for optimization, for instance when a camera
is obstructed, or the time interval between two frames is
excessive compared with others, a frame priority coordinator
is required to handle the priority among the cameras so as to
make efficient use of the computation resources. The priority

Fig. 3. A schematic of the sliding window incorporating IMU data and
visual (including depth) data for optimization.

of a frame of camera i depends on both the feature and time
interval δti since the last frame from camera i was received.
The feature priority Pfi is determined by the ratio between
the current maximum feature number of camera i fni and
the total maximum feature number FN :

Pfi =
fni

FN
, (2)

and the frame time interval priority Pti is formulated as:

Pti = e−kδti , (3)

where k is a positive constant. The coordinator waits for
the frame with either the highest feature priority to maintain
consistent feature tracking quality or the highest time priority
to preclude camera failures and forwards the corresponding
measurements to the back end for optimization.

C. Back End Optimization
In the back end optimization, we extend the formulation

from our previous work [3, 8] to accommodate multiple
asynchronous cameras. As depicted in Fig. 3, the accepted
frames from the cameras are chronologically ordered inside
the sliding window according to their time stamps for opti-
mization with a full state vector X defined as:

X =
[
x0,x1, · · ·xn, λ0, λ1, · · ·λl,xc0 ,xc1 , · · · ,xcN−1

]
xi = [pw

i ,v
w
i ,R

w
i ,ba,bg] , i ∈ [0, n]

xc
k =

[
pb
ck
,Rb

ck
, tdk

]
, k ∈ [0, N − 1],

(4)
where xi is the i-th IMU and camera states consists of posi-
tion, velocity, rotation as well as acceleration and gyroscope
biases, λj denotes the inverse depth of the j-th feature upon
its initial observation, and xc

k encompasses of the extrinsic
translation, rotation and the time offset relative to the IMU
of the k-th camera. The optimization objective is formulated
similarly as the combination of the prior factor, the IMU
propagation factor and the visual (depth) factor:

min
X

{∥ep −HpX∥2︸ ︷︷ ︸
prior factor

+
∑
k∈B

∥∥eB (
zkk+1,X

)∥∥2
Pk

k+1︸ ︷︷ ︸
IMU propagation factor

+
∑

(l,j)∈C

∥∥∥eC (zjl ,X)∥∥∥2
Pj

l︸ ︷︷ ︸
visual (depth) factor

}.
(5)

The detailed formulation can be found in [3], while a depth
(re-projection) error is integrated to facilitate RGBD cam-
eras. The prior factor originates from the marginalization of



Fig. 4. An illustration of the marginalization strategy.

(a) The custom-built quadrotor platform equipped with
three RGBD cameras.

(b) Replace the top RGBD camera by a stereo camera.

Fig. 5. The quadrotor deployed in experiments. The system is compatible
with mixed types of monocular, RGBD, and stereo camera modules.

the frames, which follows a different strategy from preceding
research, as illustrated in Fig. 4. Upon the arrival of a
new frame from camera i, the last frame from camera i is
checked. If it is a keyframe, the most outdated frame in the
sliding window is marginalized, regardless of the originating
camera. Otherwise, the last frame from camera i is thrown.
This strategy is able to handle uneven frames from multiple
cameras and cope with the malfunction of certain cameras.

III. EXPERIMENT AND RESULTS

A. Experiment Setup

The evaluation of the proposed state estimator is conducted
using a custom-built quadrotor platform depicted in Fig. 5.
The quadrotor is equipped with three Intel Realsense L515
RGBD cameras, while in particular experiments, the top
RGBD camera is replaced with an Intel Realsense D435
stereo camera to verify the performance on mixed types
of cameras. The data from a BMI088 IMU embedded in
the NxtPX4 flight controller is adopted throughout the test
flights. All the computations are performed on an Nvidia
Jetson Orin NX onboard computer. The experiments are
conducted in four scenarios: camera failure and recovery
shown in Fig. 6, wall inspection shown in Fig. 7(a), flights
employing mixed types of camera modules on the quadrotor
in Fig. 5(b), and vent pipe inspection shown in Fig. 1.

(a) Cover the top camera with a lid. (b) Unplug the top camera.

(c) Plug the front camera. (d) Trajectory result.

Fig. 6. The procedure and comparison of the trajectory results against the
ground truth during the camera failure and recovery scenario.

(a) Snapshot of the scenario with scarce features for
stable tracking in the marked areas.

(b) Trajectory result. (c) Features from the
front camera.

(d) Features from three cameras using the proposed method.

Fig. 7. The scene and the comparison of the trajectory results of the
proposed method using three cameras and using solely the front camera with
the ground truth and the features extracted at the circled position from the
front, top, and bottom images in the wall inspection scenario. The quantity
of allocated features is indicated on the lower left of each image, with
the feature point color gradient representing tracking duration from blue
(shortest) to red (longest).

B. Result and Analysis

During the failure and recovery scenario, the quadrotor
first takes off with only its top and bottom cameras. The
robustness of the system is tested through a sequence of
procedures consisting of covering the top camera with a lid,
removing the lid, unplugging the top camera, and finally



TABLE I
BENCHMARK RESULTS ON THE ESTIMATED TRAJECTORIES

Seq.

Multiple cameras Single camera

Proposed W/O feature allocation Front Top Down

ATE(m) RPE(m) ATE(m) RPE(m) APE(m) RPE(m) ATE(m) RPE(m) ATE(m) RPE(m)

failure & recovery 0.07711 0.00042 2.45813 0.00160 × × × × × ×
wall inspection 0.08488 0.00070 0.28015 0.00077 0.44229 0.00284 3.57276 0.00065 × ×
mixed camera types 0.07596 0.00076 2.02272 0.00306 0.17287 0.00094 0.11617 0.00102 × ×
×: fail. Bold: best results.

(a) Trajectory results. (b) The features without feature allocation. (c) The features using the proposed method.

Fig. 8. The comparison of the trajectory results of the proposed method and the method without feature allocation with the ground truth and the features
extracted at the circled position on the front, top, and bottom images in the mixed camera types configuration scenario. The quantity of allocated features
is indicated on the lower left of each image, with the feature point color gradient representing tracking duration from blue (shortest) to red (longest).

plugging the front camera during the flight. As evidenced by
Fig. 6(d), the proposed system maintains functionality amid
camera failures, exhibiting decent estimation errors, and the
recovered front camera can be successfully added into the
estimation, demonstrating the superior robustness, which is
unattainable by adopting single cameras.

The trajectory result and comparison with a solitary front
camera during the wall inspection scenario is shown in Fig.
7(b). When the single front camera faces the black wall
during take-off, we notice a conspicuous trajectory drift of
the estimated trajectory due to the lack of stable tracking
features (see Fig. 7(c)), while the proposed method using
multiple cameras is capable of handling this case with stable
feature tracking using the top and bottom cameras (as shown
in Fig. 7(d)).

The trajectory result and comparison with the ablation
of dynamic feature allocation in flights with mixed camera
types configuration is shown in Fig. 8(a). The method lacking
dynamic feature allocation is prone to substantial drift during
rapid yaw movements, particularly apparent when wasting
unnecessary features on feature-poor walls (see Fig. 8(b)).
Conversely, the proposed method copes effectively with
this challenging scenario buttressed by its dynamic feature
allocation strategy, as shown in Fig. 8(c).

The efficacy and robustness of the proposed method are
further corroborated during the complex task of aerial vent
pipe inspection, as shown in Fig. 1, reiterating its potential
for various practical applications.

The benchmark trajectory estimation results for scenarios
involving failure and recovery, wall inspection, and mixed
camera types are provided in Tab. I. Examination of the table
reveals that the proposed method outperforms single-camera
approaches in terms of accuracy across all three scenarios,
illustrating the advantage of employing multiple cameras.
Additionally, the proposed method surpasses the performance

of the ablation of dynamic feature allocation version in terms
of accuracy, further proving the efficacy of the strategy.

IV. CONCLUSION

In this paper, we propose a robust feature-aware multi-
camera-IMU state estimator for asynchronous camera mod-
ules. The estimator encompasses parallel front ends, a front
end coordinator and a back end optimization. It makes
efficient use of input frames by implementing a dynamic
feature number allocation and a frame priority coordination
strategy. The superior robustness and performance of the es-
timator is validated through real-flight experiments in various
challenging scenarios.

REFERENCES

[1] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam,” IEEE Trans. Robot. (TRO), vol. 37, no. 6,
pp. 1874–1890, 2021.

[2] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[3] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile
monocular visual-inertial state estimator,” IEEE Trans. Robot. (TRO),
vol. 34, no. 4, pp. 1004–1020, 2018.

[4] L. Zhang, D. Wisth, M. Camurri, and M. Fallon, “Balancing the
budget: Feature selection and tracking for multi-camera visual-inertial
odometry,” IEEE Robot. Autom. Ltr. (RA-L), vol. 7, no. 2, pp. 1182–
1189, 2021.

[5] J. Jaekel, J. G. Mangelson, S. Scherer, and M. Kaess, “A robust multi-
stereo visual-inertial odometry pipeline,” in Proc. of the IEEE/RSJ Intl.
Conf. on Intell. Robots and Syst.(IROS). IEEE, 2020, pp. 4623–4630.

[6] Y. He, H. Yu, W. Yang, and S. Scherer, “Towards robust visual-inertial
odometry with multiple non-overlapping monocular cameras,” in Proc.
of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst.(IROS). IEEE,
2022, pp. 9452–9458.

[7] A. J. Yang, C. Cui, I. A. Bârsan, R. Urtasun, and S. Wang, “Asyn-
chronous multi-view slam,” in Proc. of the IEEE Intl. Conf. on Robot.
and Autom. (ICRA). IEEE, 2021, pp. 5669–5676.

[8] T. Qin, J. Pan, S. Cao, and S. Shen, “A general optimization-based
framework for local odometry estimation with multiple sensors,” 2019.


	Introduction
	Methodology
	Front End
	Front End Coordinator
	Feature Number Allocation
	Frame Priority Coordinator

	Back End Optimization

	Experiment and Results
	Experiment Setup
	Result and Analysis

	Conclusion
	References

