
  

  

Abstract— This study introduces an innovative framework 

that employs Large Language Models (LLMs) to enhance task 

allocation by seamlessly integrating construction robots and 

human users. The LLM contains key data about the task, such 

as agent capabilities, as well as details of the end goal to be 

achieved. An efficient allocation strategy is computed, balancing 

time efficiency and resource usage. By leveraging a Natural 

Language Processing interface, the system simplifies 

interactions with construction professionals and dynamically 

adjusts to unforeseen site conditions. Two LLM agents (a 

generator and a supervisor agent) are used concurrently to 

provide a more accurate task schedule. We test the proposed 

methodology with a simple scenario where the combination of 

two LLM agents provides a more accurate and logical schedule 

for the completion of a given task. The results highlight the 

significant potential of LLMs to transform operational tasks in 

construction, indicating a substantial step forward in aligning 

the industry with the latest developments in AI. 

I. INTRODUCTION 

The inherent variability of construction sites, coupled with 
the diverse skill levels of the workforce, particularly the 
presence of non-skilled workers, necessitates technological 
solutions that are not only robust but also intuitive and 
adaptable. In general, the integration of robots and automated 
systems into daily construction tasks has been slow. The 
coexistence of robotic and human workforce will be achieved 
through a process of change [1], where new technologies will 
facilitate the communication and interaction between classical 
roles represented by construction workers (i.e., human 
workforce) and newly developed roles represented by robots 
(i.e., robotic workforce). One of the key factors to overcoming 
these challenges lies in the development of systems that enable 
flexible interaction between humans and machines, 
specifically through the use of natural language processing 
(NLP) and Large Language Models (LLM). This study 
considers the potential of improving efficiency and accuracy 
in task allocation through such technologies.  

The traditional approach to task allocation and schedule 
optimization in construction has focused on the development 
of specialized tools and software designed to create the most 
efficient schedules based on a set task description. While these 
tools offer valuable resources for planning, they often lack the 
flexibility to adapt to the unpredicted changes that are 
characteristic of construction projects. In contrast, this 
research does not aim to replace these optimization tools but 
to explore a new approach and set the base for a framework 
capable of responding to dynamic changes with the ease and 
intuitiveness of natural language interaction, commanding a 
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system composed of multiple agents of different nature (i.e., 
robot or human). 

This paper presents a novel framework for task allocation 
and schedule optimization in construction settings by 
leveraging LLMs, such as GPT-4 [2]. The core objective of 
this research is to enhance the efficiency and adaptability of 
multi-agent systems in construction tasks. The proposed 
system utilizes the advanced NLP capabilities of LLMs to 
facilitate real-time interaction between workers and advanced 
technologies, such as AI and robots, allowing for the dynamic 
adjustment of task allocations in response to unforeseen site 
conditions and errors. By processing complex variables such 
as the capabilities of each agent, battery life management, and 
estimated time for sub-task completion, the LLM generates an 
optimized strategy that aims to minimize project duration 
while maximizing resource utilization. 

A distinctive feature of the presented approach is the 
emphasis on user-friendly interaction through the NLP 
capabilities of LLMs. This will enable construction workers, 
regardless of their technical expertise, to effectively 
communicate and interact with the system, reducing the barrier 
to technology adoption within the industry. The flexibility 
offered by natural language interaction not only improves the 
integration of technology into daily operations but also 
empowers workers by making advanced tools accessible to a 
broader range of users.  

LLMs have already been proven to be able to establish 
logical relationships between different tasks in order to 
achieve a given goal [3]. However, due to its mathematical 
base built on a regressive model, LLMs are not able to 
effectively reason and predict outcomes in the future based on 
a set of constraints. Recent developments have seen the 
utilization of multiple LLM agents to achieve more accurate 
outputs regarding this, with one agent correcting or 
supervising the output from another [4].  

In addition, interaction with the LLM is heavily based on 
the quality of the prompting. Best practices suggest dividing 
the prompt into two clearly separated types of information: 
background information and API (i.e., set of actions or 
commands) information [5]. Moreover, the emergence of 
Multimodal LLMs is proving particularly useful in the field of 
robotics (e.g., for segmentation procedures) [6]. 

The use of LLMs in robotics is gaining momentum across 
various stages and applications of development, especially in 
the creation of algorithms for robot deployment [7]. Moreover, 
LLMs have demonstrated their capability in supervising tasks, 
such as detecting semantic anomalies in applications like 
autonomous driving [8]; however, they still face challenges in 
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predicting unlikely outcomes despite their accuracy with more 
probable ones [9].  

This paper is structured as follows: Section II covers a brief 
state of the art on LLMs being used for robot task allocation 
and LLMs being used in the construction field. Section III 
discusses the proposed methodology using a theoretical 
example. Section IV presents the conclusion and future work.  

II. BACKGROUND 

A. LLM robot task allocation 

The latest advances in LLMs have already seen their way 
into the robot task allocation field. Jin et al. [4] showcase a task 
planning system for robot manipulation that relies on a GPT 
model to generate a series of commands after being provided 
with the complete API and the desired task objective. A set of 
two LLM agents is used in their approach, with one of them 
generating code and the other correcting it, setting the ground 
for a framework where multiple agents are used to provide 
more accurate results.  

Singh et al. [10] present a concept of situated-awareness in 
robot task planning, which uses the surrounding context to 
derive precise plans for accomplishing a broader task. This 
method capitalizes on the code completion of LLMs, with the 
prompts structured as incomplete code that the LLM then 
completes to outline the task plan. 

Further investigation into task-oriented grasping is 
documented in [11], where the open-end semantic knowledge 
from an LLM is leveraged to guide a robot arm in grasping 
unknown objects.    

B. Large Language Models in construction applications 

Saka et al. [12] review study revealed new opportunities 
for GPT models throughout the project lifecycle. Their study 
revealed that current applications of GPT models in the 
construction industry are for information retrieval, scheduling, 
and logistics. Some of the identified challenges are 
hallucinations (i.e., incorrect or nonsensical output), lack of 
reliability, and trust.  

Regarding safety and worker training, Hussain et al. [13] 
explore the use of gesture recognition to facilitate smoother 
and more natural interactions between humans and robots at 
construction sites, thereby enhancing safety. Similarly,  Wang 
et al. [14] report the development of a chatbot designed for 
evaluating construction safety. Within the same scope, Uddin 
et al. [15] utilize LLMs for recognizing hazards and safety 
issues, alongside improving safety education and training for 
construction personnel.  

You et al. [16] developed an agent called RoboGPT that 
uses LLMs for sequence planning for multi-step operations for 
construction tasks. Their results showed that a GPT model has 
the potential to understand the background logic of a 
sequential task, providing a viable solution.  

Despite some of the discussed methods in both task 
allocation and construction applications presenting novel 
implementation of LLMs, none of those mentioned above take 
into consideration logical estimation into the future. This 
means that all their actions receive instant feedback, which 
might not be the case for large and complex scheduling 

scenarios. This study aims to overcome some of the GPT 
inherent limitations to achieve scheduling that considers 
logical estimation in the future.   
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Figure 1.  Flowchart of the overall interaction between the generator and 

the supervisor. 

III. METHODOLOGY 

Regressive LLMs are not capable of planning and 
reasoning by estimating future conditions. Their reasoning is 
based on the likelihood of the next word based on the previous 
text. To overcome this limitation, we propose a methodology 
based on two individual GPT agents: a Generator GPT and a 
Supervisor GPT.  

Both agents are instructed with background information 
regarding the scenario, task and robots, and API information 
to provide clear and standardized outputs. The instructions are 
prompted to the GPT with a clear distinction between the 
background information and a set of high-level instructions 
and actions available from the robot, as well as a sample output 
of the desired result from the GPT. This ensures a more robust 
output from the GPT. The set of instructions is kept general 
without detailing specific values for the different variables. 
The specifics are left for the user to be prompted during the 
interaction with the GPT.  

After being prompted with the specifics, the result from the 
generator, in the form of structured commands based on the 
API information provided on the background instructions, is 
fed into the supervisor for its review. The supervisor analyzes 
the provided schedule and, using the background information, 
checks if it is valid or not. In case the schedule is not valid (i.e., 
illogical), the supervisor also outputs a set of remarks and 
instructions that identify potential problems or issues with the 
proposed schedule and provide suggestions to make 
corrections. By doing that, initial issues made by the generator 
are spotted by the supervisor. The identified mistakes with 
their corresponding instructions to amend them can be fed 
back to the generator, resulting in a more accurate schedule.  

Once the supervisor has approved the schedule, the 
provided API commands are parsed into instructions 



  

understandable by the robotic agents, executing the plan as 
intended. The output consists of a set of commands with the 
following fields: 

{STEP #, [CURRENT_LOCATION], [ACTION], [INTERNAL_CARGO], 
PLACED_BRICKS, [REMAINING BATTERY]} 

By having a standardized API as a result of the GPT 
interaction, these commands can be used as high-level 
instructions (i.e., move to storage) that can be matched with 
the low-level instructions needed for specific robotic platforms 
(i.e., set of velocity commands to achieve the movement). The 
overall methodology describing the interaction between the 
two GPTs is shown in Fig. 1. 

IV. IMPLEMENTATION 

A hypothetical scenario using GPT-4 from OpenAI is used 
as proof of concept of the proposed methodology. The goal is 
for a robot to build a brick wall consisting of four bricks. There 
are three distinct areas (i.e., charging area, storage area, and 
build area) corresponding to different actions. A schematic 
representation of the main elements is shown in Fig. 2. The 
robot needs to plan the construction of the wall by taking 
bricks from the storage area to the build area. Battery 
consumption is added as the component that requires planning 
since the GPT needs to account for a battery threshold needed 
to go back to the charging area when planning the different 
steps.  

 

Figure 2.  Layout of the developed hypothetical scenario (DU stands for 

distance unit).  

Since the Generator GPT has a set of generic instructions 
defined, the user needs to prompt specific variables (i.e., 
actions’ cost) such as the size of the wall to be built and the 
different costs associated with the available actions. Key 
variables are shown in Table 1. 

TABLE I.  SUMMARY OF THE ACTIONS’ COST 

Action Cost 

Battery consumption 20% per DU 

Robot speed 1 DU/TU 

Collecting 1 MU 1 TU 

Installing 1 MU 1 TU 

Full battery recharge 1 TU 

 

For this theoretical scenario, generic distance, time and 
material units are used (DU, TU, and MU, respectively).   

The output from the Generator GPT (Fig. 3) contains a 
total of 20 steps, which is the estimated minimum number of 
steps needed to complete the task based on the initial 
assessment of the GPT. The succession of tasks is logical and 
reasonable, but, as expected, the battery management fails at 
STEP 9, where the GPT instructs the robot to move to the 
storage area when the robot is already at the minimum battery 
threshold (i.e., 20%) and suddenly places the robot in the 
charging area, ignoring the battery requirements to move to 
that area.  

 

Figure 3.  Initial output from the Generator GPT, with the issues 

highlighted in red. 

The Supervisor GPT is instructed with the same 
background information as the Generator GPT, for it to be 
aware of the end goal. After being provided with the output 
from the generator, the supervisor identified that the plan was 
not valid due to issues with battery depletion before charging 
in STEP 9. The supervisor also provided feedback on how to 
correct the mistake (i.e., sending the robot to charge before 
going below 20% of battery). After feeding the feedback into 
the Generator GPT, a new schedule was provided (Fig. 4).  

  

Figure 4.  Corrected output from the Generator GPT after having feedback 

from the Supervisor GPT. Changes are highlighted in green.  

{ STEP 1, [C], [MOVE_S], [0], 0, [80]} 

{ STEP 2, [S], [PICK], [1], 0, [80]} 
{ STEP 3, [S], [MOVE_B], [1], 0, [60]} 

{ STEP 4, [B], [BUILD], [0], 1, [60]} 

{ STEP 5, [B], [MOVE_S], [0], 1, [40]} 
{ STEP 6, [S], [PICK], [1], 1, [40]} 

{ STEP 7, [S], [MOVE_B], [1], 1, [20]} 

{ STEP 8, [B], [BUILD], [0], 2, [20]} 

{ STEP 9, [B], [MOVE_S], [0], 2, [0]} 

{ STEP 10, [C], [CHARGE], [0], 2, [100]} 

{ STEP 11, [C], [MOVE_S], [0], 2, [80]} 
{ STEP 12, [S], [PICK], [1], 2, [80]} 

{ STEP 13, [S], [MOVE_B], [1], 2, [60]} 

{ STEP 14, [B], [BUILD], [0], 3, [60]} 
{ STEP 15, [B], [MOVE_S], [0], 3, [40]} 

{ STEP 16, [S], [PICK], [1], 3, [40]} 

{ STEP 17, [S], [MOVE_B], [1], 3, [20]} 
{ STEP 18, [B], [BUILD], [0], 4, [20]} 

{ STEP 19, [B], [MOVE_C], [0], 4, [0]} 
{ STEP 20, [C], [CHARGE], [0], 4, [100]} 

{ STEP 1, [C], [MOVE_S], [0], 0, [80]}  
{ STEP 2, [S], [PICK], [1], 0, [80]}  

{ STEP 3, [S], [MOVE_B], [1], 0, [60]}  

{ STEP 4, [B], [BUILD], [0], 1, [60]}  
{ STEP 5, [B], [MOVE_S], [0], 1, [40]}  

{ STEP 6, [S], [PICK], [1], 1, [40]}  

{ STEP 7, [S], [MOVE_B], [1], 1, [20]}  
{ STEP 8, [B], [BUILD], [0], 2, [20]}  

{ STEP 9, [B], [MOVE_C], [0], 2, [0]}  

{ STEP 10, [C], [CHARGE], [0], 2, [100]}  

{ STEP 11, [C], [MOVE_S], [0], 2, [80]} 

{ STEP 12, [S], [PICK], [1], 2, [80]}  

{ STEP 13, [S], [MOVE_B], [1], 2, [60]}  
{ STEP 14, [B], [BUILD], [0], 3, [60]}  

{ STEP 15, [B], [MOVE_S], [0], 3, [40]}  

{ STEP 16, [S], [PICK], [1], 3, [40]}  
{ STEP 17, [S], [MOVE_B], [1], 3, [20]}  

{ STEP 18, [B], [BUILD], [0], 4, [20]}  

{ STEP 19, [B], [MOVE_C], [0], 4, [0]}  
{ STEP 20, [C], [CHARGE], [0], 4, [100]} 



  

As can be seen, the newly generated schedule properly 
accounts for battery depletion and sends the robot back to the 
charging area before it runs out of battery. All the instructions 
provided to the GPT agents and the interaction between them 
can be found in [17].  

One of the limitations seen from this experiment is the 
randomness of the GPT responses if the instructions are not 
concise and structured enough. The quality of the response is 
heavily affected by the quality of the initial prompt containing 
the instructions for both GPT agents.  

The complexity of the performed experiment is not high 
enough to confidently say the system would work under all 
situations. However, it clearly shows that the results are better 
with the interaction of the two agents, with each scenario 
needing its own set of tailored initial instructions.  

If the instructions provided by the supervisor in the first 
loop consistently diverge from the correct answer, the 
responses from the GPT agents will continue drifting further 
from the correct answer, highlighting a limitation inherent in 
the regressive behavior of how the LLM operates.  

V. CONCLUSION AND FUTURE WORK 

This study demonstrates the capability of an LLM-based 
strategy through the utilization of multiple GPT agents to 
surpass the LLM limitations traditionally associated with 
forecasting future outcomes through logical deduction. This 
approach underscores the potential of LLMs to provide 
dynamic and adaptive solutions in complex environments 
where predictive accuracy is crucial. The exploration into this 
field reveals the inherent flexibility of LLMs, suggesting a 
broad spectrum of applications that extend beyond the one 
explored in this study. 

Further research needs to be done in the field in order to 
explore and push the boundaries of current research regarding 
generative AI and LLM to fully understand the potential 
applications of these technologies. The next phase of this study 
will expand this case study and introduce additional 
complexity by integrating multiple robots with specialized 
roles, such as differentiating robots based on their efficiency 
in material transportation versus those optimized for 
construction tasks. Additional quantitative analysis will be 
made to assess the possible improvements achieved by the 
supervisor agent. This diversification will serve as a test bed 
to evaluate the LLM’s decision-making and problem-solving 
capabilities in a more complex scenario.  

Introducing more than one external Supervisor GPT agent 
will be considered to test if the addition of more agents would 
prevent the system from drifting into a loop of wrong answers.  

Moreover, the integration with a robot simulator is 
planned. This step will go beyond the theoretical model, 
bridging the gap between hypothetical scenarios and real 
feedback from the simulation. This progression is aimed at 
validating the LLM’s applicability and reliability in practical 
construction management settings. 
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