

Abstract— This study introduces an innovative framework

that employs Large Language Models (LLMs) to enhance task

allocation by seamlessly integrating construction robots and

human users. The LLM contains key data about the task, such

as agent capabilities, as well as details of the end goal to be

achieved. An efficient allocation strategy is computed, balancing

time efficiency and resource usage. By leveraging a Natural

Language Processing interface, the system simplifies

interactions with construction professionals and dynamically

adjusts to unforeseen site conditions. Two LLM agents (a

generator and a supervisor agent) are used concurrently to

provide a more accurate task schedule. We test the proposed

methodology with a simple scenario where the combination of

two LLM agents provides a more accurate and logical schedule

for the completion of a given task. The results highlight the

significant potential of LLMs to transform operational tasks in

construction, indicating a substantial step forward in aligning

the industry with the latest developments in AI.

I. INTRODUCTION

The inherent variability of construction sites, coupled with
the diverse skill levels of the workforce, particularly the
presence of non-skilled workers, necessitates technological
solutions that are not only robust but also intuitive and
adaptable. In general, the integration of robots and automated
systems into daily construction tasks has been slow. The
coexistence of robotic and human workforce will be achieved
through a process of change [1], where new technologies will
facilitate the communication and interaction between classical
roles represented by construction workers (i.e., human
workforce) and newly developed roles represented by robots
(i.e., robotic workforce). One of the key factors to overcoming
these challenges lies in the development of systems that enable
flexible interaction between humans and machines,
specifically through the use of natural language processing
(NLP) and Large Language Models (LLM). This study
considers the potential of improving efficiency and accuracy
in task allocation through such technologies.

The traditional approach to task allocation and schedule
optimization in construction has focused on the development
of specialized tools and software designed to create the most
efficient schedules based on a set task description. While these
tools offer valuable resources for planning, they often lack the
flexibility to adapt to the unpredicted changes that are
characteristic of construction projects. In contrast, this
research does not aim to replace these optimization tools but
to explore a new approach and set the base for a framework
capable of responding to dynamic changes with the ease and
intuitiveness of natural language interaction, commanding a

S.A P and B.G.S. are with the S.M.A.R.T. Construction Research Group,

Division of Engineering, New York University Abu Dhabi (NYUAD) (e-

mail: samuel.prieto@nyu.edu, garcia.de.soto@nyu.edu).

system composed of multiple agents of different nature (i.e.,
robot or human).

This paper presents a novel framework for task allocation
and schedule optimization in construction settings by
leveraging LLMs, such as GPT-4 [2]. The core objective of
this research is to enhance the efficiency and adaptability of
multi-agent systems in construction tasks. The proposed
system utilizes the advanced NLP capabilities of LLMs to
facilitate real-time interaction between workers and advanced
technologies, such as AI and robots, allowing for the dynamic
adjustment of task allocations in response to unforeseen site
conditions and errors. By processing complex variables such
as the capabilities of each agent, battery life management, and
estimated time for sub-task completion, the LLM generates an
optimized strategy that aims to minimize project duration
while maximizing resource utilization.

A distinctive feature of the presented approach is the
emphasis on user-friendly interaction through the NLP
capabilities of LLMs. This will enable construction workers,
regardless of their technical expertise, to effectively
communicate and interact with the system, reducing the barrier
to technology adoption within the industry. The flexibility
offered by natural language interaction not only improves the
integration of technology into daily operations but also
empowers workers by making advanced tools accessible to a
broader range of users.

LLMs have already been proven to be able to establish
logical relationships between different tasks in order to
achieve a given goal [3]. However, due to its mathematical
base built on a regressive model, LLMs are not able to
effectively reason and predict outcomes in the future based on
a set of constraints. Recent developments have seen the
utilization of multiple LLM agents to achieve more accurate
outputs regarding this, with one agent correcting or
supervising the output from another [4].

In addition, interaction with the LLM is heavily based on
the quality of the prompting. Best practices suggest dividing
the prompt into two clearly separated types of information:
background information and API (i.e., set of actions or
commands) information [5]. Moreover, the emergence of
Multimodal LLMs is proving particularly useful in the field of
robotics (e.g., for segmentation procedures) [6].

The use of LLMs in robotics is gaining momentum across
various stages and applications of development, especially in
the creation of algorithms for robot deployment [7]. Moreover,
LLMs have demonstrated their capability in supervising tasks,
such as detecting semantic anomalies in applications like
autonomous driving [8]; however, they still face challenges in

Large Language Models for Robot Task Allocation

Samuel A. Prieto, Member, IEEE, Borja García de Soto, Member, IEEE

predicting unlikely outcomes despite their accuracy with more
probable ones [9].

This paper is structured as follows: Section II covers a brief
state of the art on LLMs being used for robot task allocation
and LLMs being used in the construction field. Section III
discusses the proposed methodology using a theoretical
example. Section IV presents the conclusion and future work.

II. BACKGROUND

A. LLM robot task allocation

The latest advances in LLMs have already seen their way
into the robot task allocation field. Jin et al. [4] showcase a task
planning system for robot manipulation that relies on a GPT
model to generate a series of commands after being provided
with the complete API and the desired task objective. A set of
two LLM agents is used in their approach, with one of them
generating code and the other correcting it, setting the ground
for a framework where multiple agents are used to provide
more accurate results.

Singh et al. [10] present a concept of situated-awareness in
robot task planning, which uses the surrounding context to
derive precise plans for accomplishing a broader task. This
method capitalizes on the code completion of LLMs, with the
prompts structured as incomplete code that the LLM then
completes to outline the task plan.

Further investigation into task-oriented grasping is
documented in [11], where the open-end semantic knowledge
from an LLM is leveraged to guide a robot arm in grasping
unknown objects.

B. Large Language Models in construction applications

Saka et al. [12] review study revealed new opportunities
for GPT models throughout the project lifecycle. Their study
revealed that current applications of GPT models in the
construction industry are for information retrieval, scheduling,
and logistics. Some of the identified challenges are
hallucinations (i.e., incorrect or nonsensical output), lack of
reliability, and trust.

Regarding safety and worker training, Hussain et al. [13]
explore the use of gesture recognition to facilitate smoother
and more natural interactions between humans and robots at
construction sites, thereby enhancing safety. Similarly, Wang
et al. [14] report the development of a chatbot designed for
evaluating construction safety. Within the same scope, Uddin
et al. [15] utilize LLMs for recognizing hazards and safety
issues, alongside improving safety education and training for
construction personnel.

You et al. [16] developed an agent called RoboGPT that
uses LLMs for sequence planning for multi-step operations for
construction tasks. Their results showed that a GPT model has
the potential to understand the background logic of a
sequential task, providing a viable solution.

Despite some of the discussed methods in both task
allocation and construction applications presenting novel
implementation of LLMs, none of those mentioned above take
into consideration logical estimation into the future. This
means that all their actions receive instant feedback, which
might not be the case for large and complex scheduling

scenarios. This study aims to overcome some of the GPT
inherent limitations to achieve scheduling that considers
logical estimation in the future.

A
S

S
IS

T
A

N
T

S
/A

G
E

N
T

S

S
u

p
e
rv

is
o

r
 G

P
T

G
en

er
a

to
r
 G

P
T

U
S

E
R

E
X

E
C

U
T

IO
N

Prompt

initial

request

Generate

plan to

fulfill task

Check if

plan makes

sense

Valid?

Parse plan

into

commands

Execute

 plan

NO

YES

Provide

correct

feedback

Figure 1. Flowchart of the overall interaction between the generator and

the supervisor.

III. METHODOLOGY

Regressive LLMs are not capable of planning and
reasoning by estimating future conditions. Their reasoning is
based on the likelihood of the next word based on the previous
text. To overcome this limitation, we propose a methodology
based on two individual GPT agents: a Generator GPT and a
Supervisor GPT.

Both agents are instructed with background information
regarding the scenario, task and robots, and API information
to provide clear and standardized outputs. The instructions are
prompted to the GPT with a clear distinction between the
background information and a set of high-level instructions
and actions available from the robot, as well as a sample output
of the desired result from the GPT. This ensures a more robust
output from the GPT. The set of instructions is kept general
without detailing specific values for the different variables.
The specifics are left for the user to be prompted during the
interaction with the GPT.

After being prompted with the specifics, the result from the
generator, in the form of structured commands based on the
API information provided on the background instructions, is
fed into the supervisor for its review. The supervisor analyzes
the provided schedule and, using the background information,
checks if it is valid or not. In case the schedule is not valid (i.e.,
illogical), the supervisor also outputs a set of remarks and
instructions that identify potential problems or issues with the
proposed schedule and provide suggestions to make
corrections. By doing that, initial issues made by the generator
are spotted by the supervisor. The identified mistakes with
their corresponding instructions to amend them can be fed
back to the generator, resulting in a more accurate schedule.

Once the supervisor has approved the schedule, the
provided API commands are parsed into instructions

understandable by the robotic agents, executing the plan as
intended. The output consists of a set of commands with the
following fields:

{STEP #, [CURRENT_LOCATION], [ACTION], [INTERNAL_CARGO],
PLACED_BRICKS, [REMAINING BATTERY]}

By having a standardized API as a result of the GPT
interaction, these commands can be used as high-level
instructions (i.e., move to storage) that can be matched with
the low-level instructions needed for specific robotic platforms
(i.e., set of velocity commands to achieve the movement). The
overall methodology describing the interaction between the
two GPTs is shown in Fig. 1.

IV. IMPLEMENTATION

A hypothetical scenario using GPT-4 from OpenAI is used
as proof of concept of the proposed methodology. The goal is
for a robot to build a brick wall consisting of four bricks. There
are three distinct areas (i.e., charging area, storage area, and
build area) corresponding to different actions. A schematic
representation of the main elements is shown in Fig. 2. The
robot needs to plan the construction of the wall by taking
bricks from the storage area to the build area. Battery
consumption is added as the component that requires planning
since the GPT needs to account for a battery threshold needed
to go back to the charging area when planning the different
steps.

Figure 2. Layout of the developed hypothetical scenario (DU stands for

distance unit).

Since the Generator GPT has a set of generic instructions
defined, the user needs to prompt specific variables (i.e.,
actions’ cost) such as the size of the wall to be built and the
different costs associated with the available actions. Key
variables are shown in Table 1.

TABLE I. SUMMARY OF THE ACTIONS’ COST

Action Cost

Battery consumption 20% per DU

Robot speed 1 DU/TU

Collecting 1 MU 1 TU

Installing 1 MU 1 TU

Full battery recharge 1 TU

For this theoretical scenario, generic distance, time and
material units are used (DU, TU, and MU, respectively).

The output from the Generator GPT (Fig. 3) contains a
total of 20 steps, which is the estimated minimum number of
steps needed to complete the task based on the initial
assessment of the GPT. The succession of tasks is logical and
reasonable, but, as expected, the battery management fails at
STEP 9, where the GPT instructs the robot to move to the
storage area when the robot is already at the minimum battery
threshold (i.e., 20%) and suddenly places the robot in the
charging area, ignoring the battery requirements to move to
that area.

Figure 3. Initial output from the Generator GPT, with the issues

highlighted in red.

The Supervisor GPT is instructed with the same
background information as the Generator GPT, for it to be
aware of the end goal. After being provided with the output
from the generator, the supervisor identified that the plan was
not valid due to issues with battery depletion before charging
in STEP 9. The supervisor also provided feedback on how to
correct the mistake (i.e., sending the robot to charge before
going below 20% of battery). After feeding the feedback into
the Generator GPT, a new schedule was provided (Fig. 4).

Figure 4. Corrected output from the Generator GPT after having feedback

from the Supervisor GPT. Changes are highlighted in green.

{ STEP 1, [C], [MOVE_S], [0], 0, [80]}

{ STEP 2, [S], [PICK], [1], 0, [80]}
{ STEP 3, [S], [MOVE_B], [1], 0, [60]}

{ STEP 4, [B], [BUILD], [0], 1, [60]}

{ STEP 5, [B], [MOVE_S], [0], 1, [40]}
{ STEP 6, [S], [PICK], [1], 1, [40]}

{ STEP 7, [S], [MOVE_B], [1], 1, [20]}

{ STEP 8, [B], [BUILD], [0], 2, [20]}

{ STEP 9, [B], [MOVE_S], [0], 2, [0]}

{ STEP 10, [C], [CHARGE], [0], 2, [100]}

{ STEP 11, [C], [MOVE_S], [0], 2, [80]}
{ STEP 12, [S], [PICK], [1], 2, [80]}

{ STEP 13, [S], [MOVE_B], [1], 2, [60]}

{ STEP 14, [B], [BUILD], [0], 3, [60]}
{ STEP 15, [B], [MOVE_S], [0], 3, [40]}

{ STEP 16, [S], [PICK], [1], 3, [40]}

{ STEP 17, [S], [MOVE_B], [1], 3, [20]}
{ STEP 18, [B], [BUILD], [0], 4, [20]}

{ STEP 19, [B], [MOVE_C], [0], 4, [0]}
{ STEP 20, [C], [CHARGE], [0], 4, [100]}

{ STEP 1, [C], [MOVE_S], [0], 0, [80]}
{ STEP 2, [S], [PICK], [1], 0, [80]}

{ STEP 3, [S], [MOVE_B], [1], 0, [60]}

{ STEP 4, [B], [BUILD], [0], 1, [60]}
{ STEP 5, [B], [MOVE_S], [0], 1, [40]}

{ STEP 6, [S], [PICK], [1], 1, [40]}

{ STEP 7, [S], [MOVE_B], [1], 1, [20]}
{ STEP 8, [B], [BUILD], [0], 2, [20]}

{ STEP 9, [B], [MOVE_C], [0], 2, [0]}

{ STEP 10, [C], [CHARGE], [0], 2, [100]}

{ STEP 11, [C], [MOVE_S], [0], 2, [80]}

{ STEP 12, [S], [PICK], [1], 2, [80]}

{ STEP 13, [S], [MOVE_B], [1], 2, [60]}
{ STEP 14, [B], [BUILD], [0], 3, [60]}

{ STEP 15, [B], [MOVE_S], [0], 3, [40]}

{ STEP 16, [S], [PICK], [1], 3, [40]}
{ STEP 17, [S], [MOVE_B], [1], 3, [20]}

{ STEP 18, [B], [BUILD], [0], 4, [20]}

{ STEP 19, [B], [MOVE_C], [0], 4, [0]}
{ STEP 20, [C], [CHARGE], [0], 4, [100]}

As can be seen, the newly generated schedule properly
accounts for battery depletion and sends the robot back to the
charging area before it runs out of battery. All the instructions
provided to the GPT agents and the interaction between them
can be found in [17].

One of the limitations seen from this experiment is the
randomness of the GPT responses if the instructions are not
concise and structured enough. The quality of the response is
heavily affected by the quality of the initial prompt containing
the instructions for both GPT agents.

The complexity of the performed experiment is not high
enough to confidently say the system would work under all
situations. However, it clearly shows that the results are better
with the interaction of the two agents, with each scenario
needing its own set of tailored initial instructions.

If the instructions provided by the supervisor in the first
loop consistently diverge from the correct answer, the
responses from the GPT agents will continue drifting further
from the correct answer, highlighting a limitation inherent in
the regressive behavior of how the LLM operates.

V. CONCLUSION AND FUTURE WORK

This study demonstrates the capability of an LLM-based
strategy through the utilization of multiple GPT agents to
surpass the LLM limitations traditionally associated with
forecasting future outcomes through logical deduction. This
approach underscores the potential of LLMs to provide
dynamic and adaptive solutions in complex environments
where predictive accuracy is crucial. The exploration into this
field reveals the inherent flexibility of LLMs, suggesting a
broad spectrum of applications that extend beyond the one
explored in this study.

Further research needs to be done in the field in order to
explore and push the boundaries of current research regarding
generative AI and LLM to fully understand the potential
applications of these technologies. The next phase of this study
will expand this case study and introduce additional
complexity by integrating multiple robots with specialized
roles, such as differentiating robots based on their efficiency
in material transportation versus those optimized for
construction tasks. Additional quantitative analysis will be
made to assess the possible improvements achieved by the
supervisor agent. This diversification will serve as a test bed
to evaluate the LLM’s decision-making and problem-solving
capabilities in a more complex scenario.

Introducing more than one external Supervisor GPT agent
will be considered to test if the addition of more agents would
prevent the system from drifting into a loop of wrong answers.

Moreover, the integration with a robot simulator is
planned. This step will go beyond the theoretical model,
bridging the gap between hypothetical scenarios and real
feedback from the simulation. This progression is aimed at
validating the LLM’s applicability and reliability in practical
construction management settings.

ACKNOWLEDGMENT

This work was partially supported by the NYUAD Center
for Interacting Urban Networks (CITIES), funded by Tamkeen

under the NYUAD Research Institute Award CG001, and the
Sand Hazards and Opportunities for Resilience, Energy, and
Sustainability (SHORES) Center, funded by Tamkeen under
the NYUAD Research Institute Award CG013.

REFERENCES

[1] B. García de Soto, I. Agustí-Juan, S. Joss, and J. Hunhevicz,

“Implications of Construction 4.0 to the workforce and
organizational structures,” Int. J. Constr. Manag., vol. 22, no. 2, pp.

205–217, Jan. 2022, doi: 10.1080/15623599.2019.1616414.

[2] OpenAI, “GPT-4 Technical Report,” arXiv. Accessed: Nov. 30,
2023. [Online]. Available: https://arxiv.org/abs/2303.08774

[3] S. A. Prieto, E. T. Mengiste, and B. García de Soto, “Investigating

the Use of ChatGPT for the Scheduling of Construction Projects,”
Buildings, vol. 13, no. 4, p. 857, Mar. 2023, doi:

10.3390/buildings13040857.

[4] Y. Jin et al., “RobotGPT: Robot Manipulation Learning From
ChatGPT,” IEEE Robot. Autom. Lett., vol. 9, no. 3, pp. 2543–2550,

Mar. 2024, doi: 10.1109/LRA.2024.3357432.

[5] “Best practices for prompt engineering with the OpenAI API |

OpenAI Help Center.” Accessed: Mar. 25, 2024. [Online].

Available: https://help.openai.com/en/articles/6654000-best-

practices-for-prompt-engineering-with-the-openai-api
[6] I. Hou, O. Man, S. Mettille, S. Gutierrez, K. Angelikas, and S.

MacNeil, “More Robots are Coming: Large Multimodal Models
(ChatGPT) can Solve Visually Diverse Images of Parsons

Problems,” in Proceedings of the 26th Australasian Computing

Education Conference, in ACE ’24. New York, NY, USA:
Association for Computing Machinery, Jan. 2024, pp. 29–38. doi:

10.1145/3636243.3636247.

[7] N. Patton, K. Rahmani, M. Missula, J. Biswas, and I. Dillig,
“Programming-by-Demonstration for Long-Horizon Robot Tasks,”

Proc. ACM Program. Lang., vol. 8, no. POPL, p. 18:512-18:545,

Jan. 2024, doi: 10.1145/3632860.
[8] A. Elhafsi, R. Sinha, C. Agia, E. Schmerling, I. A. D. Nesnas, and

M. Pavone, “Semantic anomaly detection with large language

models,” Auton. Robots, vol. 47, no. 8, pp. 1035–1055, Dec. 2023,
doi: 10.1007/s10514-023-10132-6.

[9] “Event Knowledge in Large Language Models: The Gap Between

the Impossible and the Unlikely - Kauf - 2023 - Cognitive Science -
Wiley Online Library.” Accessed: Mar. 03, 2024. [Online].

Available: https://onlinelibrary.wiley.com/doi/10.1111/cogs.13386

[10] I. Singh et al., “ProgPrompt: program generation for situated robot
task planning using large language models,” Auton. Robots, vol. 47,

no. 8, pp. 999–1012, Dec. 2023, doi: 10.1007/s10514-023-10135-3.

[11] C. Tang, D. Huang, W. Ge, W. Liu, and H. Zhang, “GraspGPT:
Leveraging Semantic Knowledge From a Large Language Model

for Task-Oriented Grasping,” IEEE Robot. Autom. Lett., vol. 8, no.

11, pp. 7551–7558, Nov. 2023, doi: 10.1109/LRA.2023.3320012.
[12] A. Saka et al., “GPT models in construction industry: Opportunities,

limitations, and a use case validation,” Dev. Built Environ., vol. 17,

p. 100300, Mar. 2024, doi: 10.1016/j.dibe.2023.100300.
[13] R. Hussain et al., “Conversational AI-based VR system to improve

construction safety training of migrant workers,” Autom. Constr.,

vol. 160, 2024, doi: 10.1016/j.autcon.2024.105315.
[14] N. Wang and R. R. A. Issa, “Transfer Learning-Based Question

Generation for Building a Construction Safety Chatbot,” pp. 688–

694, Jan. 2024, doi: 10.1061/9780784485231.082.
[15] S. M. Uddin, A. Albert, A. Ovid, and A. Alsharef, “Leveraging

ChatGPT to Aid Construction Hazard Recognition and Support

Safety Education and Training,” Sustainability, vol. 15, no. 9, p.
7121, 2023, doi: 10.3390/su15097121.

[16] H. You, Y. Ye, T. Zhou, Q. Zhu, and J. Du, “Robot-Enabled

Construction Assembly with Automated Sequence Planning Based
on ChatGPT: RoboGPT,” Buildings, vol. 13, no. 7, 2023, doi:

10.3390/buildings13071772.

[17] “Large Language Models for Robot Task Allocation (additional
resources).” S.M.A.R.T. Construction Research Group, Apr. 10,

2024. Accessed: Apr. 10, 2024. [Online]. Available:

https://github.com/SMART-NYUAD/LLM-for-robot-task-
allocation-resources-

