Leveraging the USTC FLICAR Dataset to Prepare Robots for
Heavy-Duty Aerial Work Tasks in Construction Environments

Ziming Wang, Yujiang Liu, Yifan Duan, Xingchen Li, Xinran Zhang, Jianmin Ji, Erbao Dong
and Yanyong Zhang, Fellow IEEE

Abstract— The author’s previous journal article [1] intro-
duced the USTC FLICAR dataset, which aims to enhance the
autonomy of aerial robots in construction environments through
advanced sensor fusion. We discuss the integration of LiDAR,
camera, and inertial measurement units on an autonomous
aerial platform—specifically a bucket truck retrofitted with
sophisticated robotics—to address safety and efficiency in aerial
work. This integration addresses key challenges in construction
robotics such as navigating complex, dynamic environments
and ensuring the safety of human workers. Our approach
demonstrates the potential to significantly reduce risks and
improve operational accuracy in high-risk environments. All
resources of the dataset is available for download at: https:
//ustc-flicar.github.io/.

I. INTRODUCTION

In the construction industry, where the risk of accidents
and the demand for precision are high, traditional manual
methods are increasingly being supplemented by autonomous
systems. Aerial work, involving tasks such as inspection,
maintenance, and repair in hard-to-reach areas, is particularly
perilous and highlights the need for robust autonomous
solutions. Figure 1 shows some typical aerial work scenes
in the construction industry. The integration of robotics
into these tasks can not only enhance safety by reducing
human exposure to dangerous conditions but also increase
the efficiency and accuracy of the operations conducted.

Despite their potential, the deployment of autonomous
robots in such environments faces substantial hurdles, in-
cluding the need for precise navigation and robust perception
in highly unstructured, cluttered settings. In recent years,
numerous public datasets have played significant roles in the
advancement of autonomous cars and UAVs. However, these
two platforms differ from aerial work robots: UAVs are lim-
ited in their payload capacity, while cars are restricted to two-
dimensional movements. The ground datasets represented
by KITTI [2] features a wealth of sensors and centimeter-
level accuracy ground truth obtained through RTK-GPS or
LiDAR SLAM. While the aerial datasets represented by
EuRoC [3] typically have a limited types and number of
sensors due to payload capacity limitations. And millimeter-
level accuracy ground truth is generated using a laser tracker.
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Fig. 1.

Typical construction aerial work scenes using bucket trucks

What about combine the strengths of EuRoC and KITTI
to create a new aerial dataset which has both millimeter-
level accuracy ground truth and rich sensors? Here comes
USTC FLICAR. We create the “Giraffe” mapping robot
based on a new heavy-duty aerial platform bucket truck,
which is equipped with a variety of well-calibrated and time
synchronized sensors: four 3D LiDARs, two stereo cameras,
two monocular cameras, Inertial Measurement Units (IMUs),
and a GNSS/INS system. A laser tracker is used to record
the millimeter-level ground truth positions. We also make
its ground twin, the “Okapi” mapping robot, to gather data
for comparison. This dataset facilitates the development and
testing of simultaneous localization and mapping (SLAM),
crucial for effective autonomous navigation and task execu-
tion in dynamic construction sites.

Through this paper, we address the challenge of integrating
and calibrating a comprehensive array of sensors on an
autonomous aerial work platform. Our work focuses on the
practical application of these technologies in a construction
context, demonstrating how advanced sensor fusion enhances
the robot’s ability to perceive its environment and execute
tasks with high precision.

This introduction sets the stage for discussing the method-
ologies involved in sensor integration, the challenges over-
come in robust perception, and the significant benefits these
autonomous systems bring to construction environments. The
subsequent sections will delve into the specific technologies
and data analysis methods used, showcasing the real-world
applicability and effectiveness of our approach.



TABLE I

THE SENSOR MODEL SPECIFICATIONS AND DATA INFORMATION IN THIS DATASET.

No Sensor Model ROS Topic Message type Rate
1 IMU/INS Xsens MTi-G-710 /imu/data sensor_msgs/Imu 400Hz
. . . . 5/10Hz
2 Horizontal LiDAR 1  Velodyne HDL-32E /velodyne_points_ HDL32  sensor-msgs/PointCloud2 (rotate at 10Hz)
/os_cloud_node/imu sensor_msgs/Imu 100Hz
3 Horizontal LIDAR 2 Ouster OS0-128 /f)s,cloud,node/po.lnts sensor_msgs/PointCloud2 10Hz
/img_node/reflect_image sensor_msgs/Image 10Hz
/img_node/signal_image sensor_msgs/Image 10Hz
4 Horizontal LiDAR 3 LiVOX Avia /l%vox/hdar livox_ros_driver/CustomMsg  10Hz
/livox/imu sensor_msgs/Imu 200Hz
5 Vertical LiDAR 1 Velodyne VLP-32C /velodyne_points_VLP32 sensor_msgs/PointCloud2 10Hz
/camera/left/image_raw 10-16Hz
6 Stereo Camera front  PointGrey  Bumblebee /camera/center/imageraw  sensor_msgs/Image 10-16Hz
xb3 /camera/right/image_raw 10-16Hz
. /cam_xb2/left/image_raw 10-20Hz
7 Stereo Camera back l;c));ntGrey Bumblebee Jcam _xb2/right/image_raw sensor_msgs/Image 10-20Hz
8 Mono Camera 1 Hikvision MV-CB016- /hik_camera/image_raw sensor_msgs/Image 20Hz
10GC-C
9 Mono Camera 2 Hikvision MV-CE060- /right_camera/image sensor_msgs/Image 20Hz
10UC

Fig. 2. “Giraffe” and “Okapi” acquisition systems:

“Giraffe” aerial system: (a), (b) and (c).

“Okapi” ground system: (a), (b) and (d)

(a) multi-sensor data collection platform (Fig. 3), (b) laser tracker ground
truth system, (c) bucket truck, (d) ground robot.

A. Data Acquisition
II. METHODOLOGY

The primary focus of our methodology involves the in-
tegration and calibration of a diverse array of sensors on
an autonomous aerial platform to support robust navigation
and perception in construction environments. This section
outlines the sensor setup, data acquisition strategies, and
the calibration techniques employed, which are critical for
ensuring the precision and reliability of the data collected.
The data was acquired using two different systems, the
“Giraffe” and “Okapi” systems, as depicted in Figure 2.
The “Giraffe” system is an aerial platform consisting of

Fig. 3.

Sensor setup on a multi-sensor platform.

a multisensor data collection platform (a), a laser tracker
ground truth system (b), and a bucket truck (c). On the other
hand, the “Okapi” system is a ground-based system similar
to an autonomous vehicle, equipped with the same sensors
(a) and a ground truth recording system (b), and mounted on
a ground robot (d) for the acquisition of ground-level data
for comparison with the data collected by the aerial system.

A. Sensors Setup

Our aerial platform, referred to as the “Giraffe,” is
equipped with an array of sensors on a bucket truck that
includes four 3D LiDARS, two stereo cameras, two monoc-
ular cameras, inertial measurement units (IMUs), and a
GNSS/INS system . This configuration is designed to capture
a comprehensive set of data that supports robust perception
and navigation capabilities. The LiDAR sensors provide



Fig. 4. Velo2Cam [5] camera-LiDAR calibration. Up-Left: special cali-
bration board, project LIDAR point cloud to the image. Up-Right: colorize
LiDAR point cloud with image.Down: Aerial scenes LiDAR points fusion
with images.

spatial mapping and object detection capabilities, crucial
for navigating complex construction sites, while the camera
systems capture detailed visual and textural information,
facilitating object recognition and scene interpretation.

Data acquisition is conducted using both the aerial plat-
form and its ground counterpart, the “Okapi,” to ensure a
diverse environmental dataset. The aerial platform performs
tasks in a variety of settings including urban construction
sites and industrial environments, simulating real-world op-
erational conditions. The datasets include different times of
day and weather conditions to test the system’s robustness
under variable lighting and climatic influences.

B. Calibration Techniques

Proper calibration of sensors is imperative to achieve
accurate data fusion and reliable results. We employ several
calibration methods tailored to each sensor type:

o LiDAR Calibration: We use a combination of man-
ual alignment techniques followed by automated point
cloud registration to ensure the LiDARs are precisely
calibrated. This process is vital for accurate 3D recon-
struction of the environment.

e Camera Calibration [4]: The stereo and monocular
cameras are calibrated using a standard checkerboard
calibration method to determine intrinsic parameters
and to rectify lens distortions. This step is crucial for
accurate depth estimation and object detection.

« Sensor Fusion Calibration: A key aspect of our method-
ology is the fusion of LiDAR and camera data, which is
achieved through a sophisticated calibration process that
aligns the data streams in time and space. This ensures
that the visual and spatial data complement each other,
enhancing the system’s ability to navigate and interpret
complex environments. As shown in Figure 4.
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Fig. 5. The sensor system used to capture the datasets consists of multiple
sensors, each reporting measurements in its own reference frame S. The
datasets also include raw data from ground truth instruments, reported in
the target ball frame Spqy; and Laser tracker frame R. The body frame
B is aligned with the IMU sensor frame I. Calibration information for all
extrinsic parameters linking the sensors to the body frame B and intrinsic
parameters is included in the dataset.

C. Ground Truth Validation

To validate the accuracy of our autonomous localization
and mapping, we use laser trackers and other ground truth
systems to provide a baseline against which our robotic
system’s performance can be measured. This validation is
critical for assessing the precision and reliability of the
autonomous system under real-world conditions.

III. RESULTS

We evaluated state-of-the-art visual and LiDAR SLAM
algorithms using different sensor suites and data sequences
to analyze our dataset’s characteristics and challenges. The
absolute trajectory error (ATE [6]) was used as a performance
metric. Toolbox evo [7] is used. We ensured parameter
consistency across algorithms and sensors to achieve optimal
results for each.

For visual SLAM, we tested algorithms like ORB-SLAM3
[8] and VINS-Mono [9] on various configurations, including
monocular, monocular-inertial, and stereo-inertial systems.
These evaluations highlighted differences in performance
based on camera characteristics and lighting conditions. For
instance, the Bumblebee-XB3 camera performed better in
low light but struggled with glare, affecting the accuracy
of ORB-SLAM3. Conversely, VINS-based methods showed
greater robustness in extreme lighting conditions, maintain-
ing accuracy by leveraging environmental data from the
Bumblebee-XB3 camera.

In LiDAR SLAM testing, we used A-LOAM [10] and
LeGO-LOAM [11] on Velodyne LiDARs and tested LIO-
SAM [12] and FAST-LIO [13] on LiDAR-Inertial systems.
LiDAR SLAM generally provided reliable results, with an
ATE around 0.1 m under typical conditions. However, chal-
lenges arose with vertical LiDAR due to its limited field
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Fig. 6. The ground truth is marked in red and the SLAM trajectory is

marked in yellow. The figure shows the running results of Fast-LIO [13] on
the hf006 sequence.

of view and issues in texture-poor environments, leading to
increased ATE in scenarios with large rotations or low feature
overlap.

Overall, the study confirmed the efficacy of integrat-
ing well-calibrated IMUs to enhance SLAM accuracy and
robustness, particularly under challenging conditions. The
results varied by sensor type and environmental factors, with
ORB-SLAM3 excelling in well-lit conditions and VINS-
based methods performing consistently across varied lighting
scenarios.

IV. CONCLUSION AND FUTURE WORK
A. Conclusion

The research presented in this extended abstract demon-
strates the effectiveness of integrating advanced sensor tech-
nologies in autonomous aerial work robots for construction
environments. Through rigorous evaluation of various SLAM
algorithms using the USTC FLICAR Dataset, we have sub-
stantiated the significant advantages of multimodal sensor
fusion over single-sensor systems. Our findings confirm that
the hybrid approach not only enhances the accuracy and
robustness of autonomous navigation and mapping but also
substantially improves the system’s operational efficiency
and safety in complex, dynamic construction sites.

The successful deployment of these technologies in real-
world settings illustrates their potential to revolutionize
construction operations by reducing risks and increasing
efficiency. The robustness of the integrated SLAM systems
in diverse environmental conditions underscores the practical
viability of this technology for widespread industrial appli-
cations. For more detailed information, we invite interested
readers to consult our full journal paper [1] and visit our
project website.

B. Fulture Work

Moving forward, our research will focus on refining data
fusion and SLAM algorithms. A key aspect of our future
work will involve developing more robust and practical
algorithms by integrating the Fast-LIO [13] framework,
the USTC FLICAR dataset [1], and the inherent features
and constraints of robotic arms. This approach is aimed
at advancing construction robotics and making meaningful
contributions to the community. Collaborative efforts with
industry and academic partners will continue to be crucial in
optimizing these technologies and broadening their impact
across various high-risk industries.
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