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Fig. 1.

A large-scale map from heterogeneous LiDARs. Yellow represents the map acquired using the SOSLAB’s ML-X LiDAR (solid state LiDAR)

with an Agent 0 robot, and blue represents the map acquired using the Ouster OS1-64 (spinning LiDAR) with an Agent 1 robot. The green square
represents a thermal image that shows temperature changes and an RGB image that shows illumination changes between day and night. Additionally, the
red square represents a local ground map obtained through a ground-facing RGB-D camera.

Abstract— Collaboration of multiple field robots is necessary
for the navigation and mapping of large-scale environments.
While traversing, traversability estimation considering each
robot’s nature is essential for keeping the robot safe and
ensuring its performance. Even in a structured environment,
driving without considering terrain information can lead to
serious damage to the platform, such as slipping due to steep
slopes or falling caused by sudden height changes. To address
this challenge, we present DiTer++, multi-robot, multi-session,
and multi-modal datasets, including ground-level information.
The dataset is obtained with a forward-facing RGB camera
and ground-facing RGB-D camera, a thermal camera, two
types of LiDARs, IMU, GPS, and robot motion sensors. The
dataset and supplement materials are available at https:
//sites.google.com/view/diter-plusplus/.

I. INTRODUCTION

Multi-robot collaborative simultaneous localization and
mapping (SLAM) plays a groundbreaking role in the ef-
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ficient mapping of large-scale outdoor environments such
as construction site where hazards and dynamic objects are
spread. Therefore, sharing the understanding of perception
among robots is necessary to conduct mapping tasks in such
challenging environments.

Recent studies have reported about [4]-[11] multi-robot
management in outdoor environments. However, since each
robot has distinct hardware characteristics that determines the
traversability in its operating area, ground-level information
of each robot is necessary. Also, as the RGB camera is blind
at night, including the thermal camera data from both day and
night to complement the tracking loss is also needed. Unlike
the aforementioned datasets that only employ spinning light
detection and ranging (LiDAR), we utilize heterogeneous
(spinning, solid) LiDAR to enrich the dataset.

Our previous version of this article [1] proposed multi-
modal and multi-session dataset consisted of terrain infor-
mation obtained from a ground-facing RGB-D camera, but
challenges from multi-robot, night navigation, and heteroge-
neous LiDAR still remained. To overcome the challenges
and to address more various situations, we present new
contributions as follows:

o Multi-robot: We employ two quadruped robots for

data acquisition. Each robot is assigned to traverse a
certain coverage with diverse terrain, including lawn,
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TABLE I
VARIOUS MULTI-ROBOT AND DIVERSE TERRAIN DATASETS

Datasets Hardware Environments Multi-Robot Multi-Session Ground RGB-D RGB Thermal Heterogeneous LiDARs GPS IMU Robot Motion
DiTer (1] Quadruped Diverse Terrain X v v v v X v v v
Katwijk [2] Rover Soft Terrain X X v v X X v v X
TAIL (3] Wheeled / Quadruped Soft Terrain X X v v X X v v v
WildPlaces [4] Handheld Jungle X v X X X X X v X
CWT (5] Excavator Construction site X X X v X X X X X
PARK [6] Wheeled Outdoor v X X X X X v v X
LAMP 2.0 [7] Wheeled / Quadruped In/Outdoor v X X X X X X X X
Kimera-Multi [8] Wheeled In/Outdoor v X X v X X X v X
GRACO (9] Wheeled / Drone Outdoor v X X v X X v v X
S3E [10] Wheeled In/Outdoor v X X v X X v v X
RING++ [L1] Quadruped Outdoor v X X X X X X X X
DiTer++ Quadruped Diverse Terrain v v v v v v v v v

curb, asphalt, etc.

o Multi-session: Our dataset contains day and night sce-
narios for each sequence.

e Multi-modal: Our dataset is collected by multiple
perceptual sensors, including RGB, RGB-D, thermal
camera, and LiDARs with heterogeneous scan patterns
as shown in Fig. [I} Additionally, we equip the robot
with sensors that assist in navigation, including a built-
in motion sensor, Global Positioning System (GPS), and
inertial measurement unit (IMU). A brief setup of sensor
and acquired data is represented in the Fig.

II. RELATED WORKS

As represented in Table[l] we review various works related
to multi-robot and diverse terrain datasets with DiTer++, an
extension of the previous work [1].

1) Multi-Robot datasets: PARK [6] consists of sequences
in which three robots equipped with LiDAR navigate. LAMP
2.0 is a dataset used in the DARPA SubT Challenge. It
provides sequences from a variety of situations, with a single
LiDAR mounted on the robot. Kimera-Multi is a dataset fo-
cused on vision-based distributed semantic SLAM. However,
it equips each robot with LiDAR to provide ground truth
depth. GRACO is a multi-session and multi-modal driving
dataset for drones and unmanned ground vehicle (UGV). It
reports the results of distributed SLAM, thereby proving its
value as a synthetic distributed dataset. S3E provides a vari-
ety of indoor/outdoor sequences. It demonstrates the utility
of this dataset through the application of DCL SLAM [12].
RING++ efficiently conducts multi-robot mapping through
its own quadruped robot dataset.

2) Diverse Terrain datasets: DiTer is an initial version
of this paper, focusing on diverse sensors acquiring data
over the long term. It aims to address the problems of
multi-session scenarios, but due to the absence of sequences
captured at night, overcoming lighting changes between day
and night through this dataset is challenging. Katwijk, TAIL
[2, 3] acquire various sensor data in soft terrains, such as
sand. Each dataset utilizes a rover or quadruped robot to
overcome challenges in these environments. However, they
also face issues with illumination changes between day and
night due to the absence of thermal cameras. Additionally,
since the datasets are not acquired over a long period, they
are not suitable for addressing multi-session problems. Wild-
Places is a dataset acquired over a long period but is only

equipped with LiDAR sensors. Since it does not capture
dense information, the map building results sparse, hindering
map to contain rich features.

III. SYSTEM SETUP AND CALIBRATION
A. Sensor measurement, setup, and topics

As shown in Fig. [2] each robot shares a partially identical
sensor setup, followed by different LIDAR and IMU. Sensor
specifications for each agent are configured in Table |lI} To
inherit the main purpose of our previous work [1], both
agents have the identical structure of a forward-looking
sensor system consisting of RGB, thermal, and tilted RGB-D
cameras. The following sensors are placed heading forward
to obtain sufficient visual measurement and ground informa-
tion simultaneously.

TABLE I
SENSOR SPECIFICATIONS AND ROSTOPIC NAME

Agent ID | Hardware Sensors Specifications Topic name
/agent0/ground/depth/image_raw
RGB-D Intel Realsense D435i /ugenl()/ground/depth/(.:umeraJnfo
/agent0/ground/color/image_raw
/agent0/ground/color/camera_info
RGB Intel Realsense D435i /agent()/trom/co]orllmage,r.aw
/agent0/front/color/camera_info
Agent0 )l NuC JagentO/ffir_boson/image ra
Thermal FLIR Boson ADK agentl/Hiir-boson/image raw
/agent0/flir_boson/camera_info
LiDAR SOSLAB ML-X /agentO/ml/points
GPS Ublox C099-F9P /agentO/ublox_gps/fix
9DoF-IMU Microstrain 3DM-CV7 /agent0/imu/data
Uniitree-GO1 | 6DoF-IMU Built-in Robot fagent0/odom
Jagent0/imu
/agent1/ground/depth/image_raw
RGB-D Intel Realsense D435i /ugenll/ground/depth/(.:umeraJnfo
/agentl/ground/color/image_raw
/agent1/ground/color/camera_info
RGB Intel Realsense D435i /agent1/trom/co]orllmage,r.aw
Agent 1 /agent1/front/color/camera_info
Intel NUC ag ir_boson/image _ra
nte Thermal FLIR Boson ADK /aEemI/t?ll,boson/un%ej.aw
/agentl/flir_boson/camera_info
LiDAR Ouster OS1-64 /agentl1/ouster/points
GPS Ublox C099-F9P /agent1/ublox_gps/fix
9DoF-IMU | Microstrain 3DM-GX5-25 /agent]/imu/data
Uniitree-GO1 | 6DoF-IMU Built-in Robot fagentl/odom
/agent1/imu

Subsequently, the LiDAR sensor is located at the rear side
of the visual measurement mount, providing relatively accu-
rate geometric measurement. Each agent utilizes LiIDAR with
heterogeneous scan patterns, measurement range, and FOV.
Agent 0 provides full azimuth measurement, enabling full
recognition of the surrounding environment. Agent 1 pro-
vides limited FOV, but still has accurate range measurement
from forward. GPS, IMU, built-in IMU, and odometry are



Fig. 2.

also provided considering the robot’s navigation. Agent no-
tation is done to distinguish acquired data with namespace,
which can also be found in the obtained data topics.

B. Calibration

1) Intrinsic Calibration: For calibrating camera’s intrinsic
parameter, we utilize ROS| camera calibration. In terms of
thermal camera, pixel value inversion is applied to the
thermal image since the values of the black and white pattern
are opposed. For more details, we suggest to refer [I].

2) Extrinsic Calibration: For extrinsic calibration, we
apply marker-based LiDAR-camera calibration[13]] for
forward-facing RGB and thermal camera between LiDAR.
For LiDAR-IMU calibration, we utilize the robust real-time
LiDAR-inertial initialization method proposed in [14].

Since calibration between ground-facing RGB and LiDAR
is not straightforward due to the non-overlapping region, we
adopt extrinsic parameters for the two RGB cameras from
the CAD model we designed. The output of the merged point
clouds is represented in Fig. 3]

Fig. 3.
color means a point cloud from the ground-facing RGB-D camera. The
yellow color represents a point cloud from the forward-facing camera.

(Left) Merged point cloud of two depth cameras. (Right) The blue

IV. DATASET

All sequences are obtained within the outdoor sites and
are conducted at two different places, noted as LAWN and
PARK, respectively. Each sequence contains multi-session
and multi-robot scenarios that deploy agents with vary-
ing setups of sensors. LAWN is conducted by Agent O
and Agent 1, which are distinguishable by sensor setups.

Tllustration of robots with holistic and perceptual sensors with different LIDAR setups: solid-state and mechanical types.

PARK is conducted only with Agent 1. Table [lIlj summa-
rizes terrain, etc. Details of each sequence are as follows:

1) LAWN is obtained from an extremely unstructured
environment with terrains showing high level of veg-
etation. In this sequence, Agent 0 and Agent 1
travels around the boundary of the upper and lower
region of the LAWN sequence, then moves to the
center of each region. Data obtained from both agents
include scenes with occlusion caused by vegetation,
and challenging traverse scenarios against stones and
narrow bushes.

2) PARK is obtained around a campus building that
contains multiple environments. Both inner and outer
regions of the PARK are covered with Agent 1 setup.
The inner region of the PARK consists of a narrow
underground area and unstructured terrain in the center,
while the outer region consists of pedestrian walkway,
urban area, and a route around the construction site.
PARK sequence includes scene with multiple dynamic
objects and various illumination conditions from envi-
ronment changes.

Sequences contain overlapping regions and shared per-
spectives of view from each sensor. As shown in Fig. 4]
the overlapping region is comparatively large in the LAWN
sequence, while the PARK sequence only shows a limited
amount of overlap near the start point. Fig. 5] shows the
alignment of maps acquired from each robot, leveraged by
Point-LIO[13] to check our dataset’s capability of collabo-
rative map building visually.

V. CONCLUSION

We propose DiTer++, an extension of our previous work
[1]. DiTer++ exploits two quadrupedal robots, which provide
both proprioceptive measurements of the robot and extero-
ceptive measurement from perceptive sensors. Our sequences
contain multiple challenges for generic mobile platforms to
be traversed, including rapid environment changes, unstruc-
tured terrains with extreme height changes, and etc. Rich
scenarios and comprehensive measurement of our dataset
allows research on long-term autonomy, environment change
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Fig. 4. Overlapping region visualization from both sequences (LAWN and

PARK).

Fig. 5. Global map visualization of both sequences (PARK and LAWN).

detection, and autonomous survey task in construction en-
vironments. Our dataset especially targets development of
long-term SLAM and traversability mapping algorithm for

both single and multi-robot in construction.

SUMMARY OF OUR MULTI-SESSION DATASET

TABLE III

Sequence Name

Terrain

Length

Duration

LAWNO & 1

Lawn with hills

351m / 204m

790s / 239s

PARK 0 & 1 Vegetation / Sidewalk and Asphalt

446m / 244m

1070s / 459s
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