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Abstract— In construction sites, which are large-scale and
complex urban environments, it is essential to merge multi-
ple maps obtained from various platforms. However, sensor-
modality and dynamic environments remain challenging prob-
lems for unified mapping. To address this issue, we present
Uni-Mapper, a dynamic-aware 3D point cloud map merging
framework for multi-modal LiDAR systems. Our scene de-
scriptor rejects dynamic objects in real-time and is robust to
LiDAR modality based on local triangle features. To ensure
consistent mapping performance, we adopt centralized pose
graph optimization with a two-step registration process. We
thoroughly evaluate the superiority of the proposed framework
using two datasets: HeLiPR (multi-modal) and INHA (multi-
modal, multi-robot).

I. INTRODUCTION AND RELATED WORKS

Light Detection and Ranging (LiDAR) is essential for
robot navigation, offering accuracy and wide coverage. As
sensor technology advances, various types of LiDAR with
unique Field Of View (FOV) and scan patterns have devel-
oped, necessitating careful selection for effective mapping.
For instance, autonomous heavy equipment prefers omnidi-
rectional LiDAR for safety, while lightweight LiDAR suits
agile quadrupedal robots. Although large-scale mapping of
diverse terrains has made the need for multi-robot mapping,
the distinct configuration of each LiDAR becomes more
challenging for multiple map alignment. Furthermore, dy-
namic objects frequently present in construction sites cause
an undesired traces on maps as known as the ghost trail
effect problem. Eliminating these dynamic objects is crucial
for effective mapping in varied environments.

To address these challenges, ongoing researches focus
on place recognition (PR) [1–4], Dynamic Object Removal
(DOR) [5–7] and Map Merging (MM) [8]. However, recent
approaches struggle to handle variations across LiDAR types,
and the majority of DOR is used for offline post-processing.
Furthermore, there are few publicly open map merging
frameworks that account for both multi-modal LiDAR and
dynamic environments.
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In this paper, we introduce Uni-Mapper, a LiDAR-
modality-agnostic, dynamic-aware map merging framework.
This framework facilitates robust MM in dynamic envi-
ronments through dynamic-aware triangle descriptor and
multiple pose graph optimization. The DOR module em-
ploys voxel representation using a coarse-to-fine strategy for
achieving static maps. Additionally, it integrates with the
stable triangle descriptor (STD) [1], a state-of-the-art (SOTA)
LiDAR descriptor for 3D PR. Our proposed DynaSTD de-
scriptor is capable of detecting loops across diverse LiDAR
types and robot platforms by leveraging local geometric
features. From a MM perspective, we successively optimize
intra-session and multi-map pose graphs and employ anchor
factors to align multiple maps to a unified coordinate system.
To summarize, our contributions are as follows:

• We propose a novel dynamic-aware and LiDAR-
modality-agnostic MM framework for multi-session and
multi-robot scenarios. Our system simultaneously esti-
mates dynamic points and unifies multiple maps in a
single process.

• DynaSTD, a global descriptor which integrated with
DOR module is proposed. As DynaSTD is built from a
combination of local descriptors, it demonstrates robust
performance to LiDAR modality and dynamic environ-
ments.

• The proposed framework is evaluated through different
types of LiDAR and platforms on public and cus-
tom datasets including a number of dynamics. We
demonstrate that our unified framework shows robust
performance in dynamic environments and cross-modal
LiDAR sensors.

II. METHOD

The system is built upon two main modules: dynamic-
aware scene description and multi-map merging, as shown
in Fig. 1.

A. Dynamic-aware scene description

1) Online dynamic object removal: As reported in Lim
et al. [7], most dynamic objects are classified as non-ground
points Png situated on the ground points Pg . Our DOR
approach is to segment free space based on the ground prior
and identify dynamic points that exist in free space.

For ground segmentation, LiDAR scans are accumulated
into a dense keyframe point cloud P to compensate for
the sparsity issue. P is voxelized with coarse leaf size Lc

(e.g. 2m) and voxel-wise planarity is checked by Principal
Component Analysis (PCA). Ground voxels G are selected
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Fig. 1: Our proposed framework for dynamic-aware LiDAR-agnostic multiple map merging.

Fig. 2: Four steps of DynaSTD. (a) Ground estimation (green), (b) dynamic
candidates selection (yellow), (c) dynamic points segmentation (red), and
(d) dynamic-aware descriptor (blue)

from plane voxels by calculating relative angle with plane
normal and robot uprightness similar with [7]. As shown in
Fig. 2, we set dynamic candidate voxels C as neighboring
voxels to G, which dynamic objects can be present.

Since C consists of partial ground region, we additionally
segment ground points in candidate voxel Pg

C using neigh-
boring ground information as:

Pg
C =

{
p ∈ PC | nT

a (p− pa) < mth

}
, (1)

where na, pa and mth as average plane normal, average cen-
tral point of adjacent ground voxels, and margin threshold,
respectively. For detailed estimation, we subdivide C into
finer voxels, using a smaller leaf size Lf (e.g. 0.2m) and
refer to the combined coarse-to-fine voxel map.

Instead of relying on ray-casting-based occupancy updates
[5] which require heavy computation, we simplify the free
space estimation problem to segment vacant space extending
from ground height hg to the lowest non-ground voxel zm.
In the case of G, which has no objects above, we set zm

as infinity, and all spaces above ground are regarded as free
space for efficiency.

We utilize sliding windows of free space hash maps to
estimate consistent vacant regions. By adopting recursive
binary bayes filter, the local free space submap denoted as
E is determined where the majority of temporal voxels are
vacant. Finally, P is classified into static and dynamic points
as:

p =

{
pdyn, if ∃p ∈ E
psta, else.

(2)

2) Dynamic-aware scene description: Based on our on-
line DOR module, we integrate this module with STD[1].
As global descriptor d is composed of local geometric
triangle descriptors ∆, it facilitates loop detection which
has only partial overlaps across varied LiDAR FOV and can
estimate relative pose only using d which is efficient than
conventional scan matching algorithms. However, dynamic
objects identified as key points act as outliers which degrade
PR performance. Removing dynamic elements enables the
generation of robust global descriptors suitable for highly
dynamic environments.

B. Multiple pose graph optimization

1) intra-session pose graph optimization: As estimated
trajectory X from LiDAR odometry contains drift errors
from sensor measurement and processing noise, loop closing
is essential to correct undesired effects. Intra-session pose
graph optimization of each maps are represented as:

X̂ = argmin
X

∑
m∈N

F(Xm), (3)

where X̂ and N represent the optimized trajectory set of
multiple maps and map index set, respectively. Single pose
graph F(·) is defined as:

F(X) =
∑
t

∥f (xt,xt+1)− ẑt,t+1∥2∑
t

+
∑

⟨i,j⟩∈LIS

ρ
(
∥f (xi,xj)− S(di,dj)∥2∑

i,j

)
,

(4)
where function f(·) is relative pose calculator, ẑ is estimated
odometry, and LIS is intra-session loop pairs by PR. S(·)
denote relative pose estimator based on descriptor. As F(·)
consists of an intra-session factor graph of each map, pose
graphs are optimized independently. To handle incorrect
loop constraints, we use a Cauchy distribution-based robust
estimator ρ(·).



2) Multi-modal LiDAR map merging: Our multi-map
merging module employs a centralized approach to optimize
multiple pose graphs. To resolve intra-session drift errors
while aligning multiple maps, we adopt anchor-node based
pose graph optimization [9] as:

X∗ = argmin
X̂

{ ∑
m∈N

F(X̂m) +
∑
Q∈Q

A(X̂C , X̂Q)
}
, (5)

where X∗ is a trajectory set aligned with the unified coor-
dinate of the central map, C is central map and Q is query
map set. Anchor node based factor graph A(·) and anchor
factor Φ(·) are represented as:

A(X̂C , X̂Q) =
∑

⟨i,j⟩∈LIM

∥∥∥Φ(
x̂C
i , x̂

Q
j , δ

C , δQ
)
− ẑi,j

∥∥∥2∑
i,j

(6)
Φ
(
xC
i ,x

Q
j , δ

C , δQ
)
=

((
δC ⊕ xC

i

)
⊖
(
δQ ⊕ xQ

j

))
(7)

where LIM is inter-map loop pairs and SE(3) pose operators
are denoted as ⊕ and ⊖. Anchor node δ represents the
relative transformation between each map’s origin coordinate
systems to the centralized target system. By allocating large
covariance to query anchor nodes, all query anchor nodes are
aligned to the central map to minimize measurement errors.
For inter-map constraints ẑij , we utilize S(·) as an initial
map alignment and radius-search-based loop closing as a
refined registration. G-ICP is adopted for refined registration
to achieve a better precision in map unification.

III. EXPERIMENTAL RESULTS

For the concrete validation, we tested the proposed method
on multi-modal LiDAR datasets as follows: TOWN1-2 se-
quences of HeLiPR [10], and WHEEL, DOG, and HAND
sequences of our own dataset called INHA. A summary of
each data sequence is provided in Table I. While HeLiPR
provides ground truth trajectories, we manually constructed
the ground truth using interactive SLAM [11] for INHA
sequence. Also, we utilized FAST-LIO2 [12] to generate
single-session odometry for both datasets. As both dataset
lack of point-wise semantic information, we manually label
dynamic points for Town2 and WHEEL sequences to evaluate
DOR performance.

TABLE I: Datasets Summary

Name Complexity Robot LiDAR FOV (H × V)

TOWN1 ⋆ ⋆ ⋆
Vehicle

Ouster OS2-128 360◦ × 22.5◦

TOWN2 ⋆ ⋆ ⋆ Aeva Aeries 120◦ × 19.2◦

WHEEL ⋆ ⋆ Mobile Ouster OS1-64 360◦ × 45◦

DOG ⋆ ⋆ ⋆ Quadruped Velodyne VLP-16 360◦ × 30◦

HAND ⋆ Hand-held Livox Avia 70◦ × 77◦

A. Evaluation on dynamic-aware scene description

To verify the necessity of a dynamic-aware and LiDAR-
modal-agnostic description, we evaluate both DOR and PR
performance. Table. II and Fig. 3 shows the quantitative and
qualitative result of our DOR module compared to Removert
[6]. In both datasets, Table. II shows competitiveness of our
methods on static mapping (SA) and better performance on
DOR (DA), which results in balanced performance (AA)
while Removert depends on prior map data. In addition, our
method demonstrates best efficiency in runtime.

TABLE II: Quantitative evaluation of dynamic removal

Seq Methods SA ↑ DA ↑ AA ↑ Runtime[ms]

TOWN2
Removert 99.78 24.38 49.22 58

Ours 99.45 66.36 81.24 23

WHEEL
Removert 98.85 78.33 87.99 89

Ours 91.87 93.86 92.86 10

By removing dynamic objects online in the scene de-
scription, our method generates a scene descriptor robust to
dynamic environments. Fig. 4 represents the true positive
(green) and false positive (red) matching pairs under maxi-
mum precision conditions. As shown in Fig. 4, our approach
consistently exhibits superior loop detection performance
compared to other methods. Global descriptors [2–4] which
encode 3D spatial information into a low-dimensional space
are susceptible to the different FOV of LiDAR. Conversely,
local feature-based techniques like STD show robustness to
cross-modality. However, STD tends to show lower perfor-
mance in dynamic environments. In Fig. 4, the dashed blue
boxes in ours represent the locations identified as a loop,
unlike the dashed yellow boxes of STD.
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Fig. 3: Qualitative results of our framework. Colored pointcloud represent merged maps between multi-modal LiDARs. The red points indicate dynamic
objects. The pair of colors and sequence is represented as follows. HeLiPR: OS2-128 (blue), Aeva (yellow) / INHA: OS1-64 (blue), AVIA (yellow) and
VLP16 (green).



Fig. 4: The place recognition results for multi-modal datasets under maximum precision. In each pair, the lower and upper trajectories represent base and
query maps, respectively. Each map pair is as follows. HeLiPR: TOWN1(base), TOWN1(query) / INHA: WHEEL(base), HAND(query).
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Fig. 5: Visualization of the trajectory after map alignment

TABLE III: Absolute Trajectory Error (m)

Sequence LT-mapper (SC) LT-mapper (STD) Ours

HELIPR (Ouster-Avea) 850.65 22.07 17.98
INHA (Ouster-Velodyne) 6.90 45.29 0.81

INHA (Ouster-Avia) 122.70 0.59 0.35

B. Map Merging and Alignment Evaluation

We evaluated the map merging performance comparing
our method (Uni-Mapper) with the Scan Context (SC) based
LT mapper (original) and the STD-based LT Mapper (Cus-
tomized). Fig. 5 and table III represent the qualitative and
quantitative performance of multiple map alignment. We
utilize the base session from Ouster and the query session
from Avea for HeLiPR and Velodyne/Avia for INHA. LT-
mapper (SC) fails to align multiple maps from the different
modalities of LiDARs, and LT-mapper (STD) suffers from
dynamic objects that cause false matching and incorrect
registration in INHA sequences (Ouster-Velodyne). On the
other hand, our framework demonstrates robust map merging
performance to both LiDAR modality and dynamic objects.
In ATE criteria, our method shows an 87% and 32% improve-
ment compared with the LT-mapper (SC) and the LT-mapper
(STD), respectively.

IV. CONCLUSION

This paper presents Uni-Mapper, a multi-map merging
framework that incorporates a dynamic-aware global descrip-
tor for complex environments. This framework efficiently
filters out dynamic objects online, while capturing structural
information from various types of LiDAR using a local
keypoint combination. Ultimately, Uni-Mapper successfully
achieves an accurate unified map through a two-step registra-
tion process and shows superior map alignment performance
robust to LiDAR modality and dynamic objects.
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