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Abstract— Robotic manipulation in industrial scenarios such
as construction commonly faces uncertain observations in which
the state of the manipulating object may not be accurately
captured due to occlusions and partial observables. For ex-
ample, object status estimation during pipe assembly, rebar
installation, and electrical installation can be impacted by
observation errors. Traditional vision-based grasping methods
often struggle to ensure robust stability and adaptability. To
address this challenge, this paper proposes a tactile simula-
tor that enables a tactile-based adaptive grasping method to
enhance grasping robustness. This approach leverages tactile
feedback combined with the Proximal Policy Optimization
(PPO) reinforcement learning algorithm to dynamically adjust
the grasping posture, allowing adaptation to varying grasping
conditions under inaccurate object state estimations. Simulation
results demonstrate that the proposed method effectively adapts
grasping postures, thereby improving the success rate and
stability of grasping tasks.

I. INTRODUCTION

Robotic manipulation in construction has witnessed rapid
advancements driven by improvements in perception, control,
and learning-based methods [1]. For example, researchers
have been exploring generalizable grasping policies in con-
struction objects [2], dexterous manipulation in pipeline
assembly [3], and grasping deformable construction materials
[4]. Traditional grasping approaches typically rely on ob-
serving the current scene, computing an optimal grasp pose,
and then executing the grasp accordingly. However, these
methods inherently depend on a strong assumption—that the
robotic gripper can interact with the object precisely in the
planned grasp pose, which can be far off in reality, especially
in dynamic and uncertain construction settings. Specifically,
most grasp generation models assume that the gripper can
reach the desired pose perfectly and that the object pose
is correctly captured and remains static during the grasping
process. Such assumptions are often unrealistic in reality for
the dynamic grasping process, especially during the closing
motion of the gripper, in which interactions between the
gripper and the object can lead to unintended perturbations.
These factors significantly impact grasp stability and success
rates in real-world scenarios.

To address these challenges, we propose a tactile-based
adaptive grasping approach that enables the gripper to dy-
namically adjust its grasp in response to real-time tactile
feedback. Specifically, we designed a tactile feedback sim-
ulator in MuJoCo [5] to facilitate efficient policy training.
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The simulator generates real-physics tactile sensor data based
on force interaction and geometric features. Using Proximal
Policy Optimization (PPO), we train a reinforcement learning
policy that governs the adaptive behavior of the gripper. To
bridge the gap between simulated and real-world tactile data,
We introduce downsampled tactile observations, which refer
to using uniformly spaced sampling as the input for the pol-
icy, ensuring robustness and generalization across different
tactile sensing conditions. An experiment is performed to
evaluate the design of the adaptive grasping policy based
on tactile data. We simulate objects of different poses and
postures, and add random noise to the pose observation input
to replicate the uncertain observation in real manipulation
tasks. By incorporating tactile feedback in this manner, our
approach improves grasp stability and robustness, effectively
mitigating the limitations of traditional grasp planning meth-
ods.

II. RELATED WORK

A. Grasp Planning Algorithms

Previous robotic grasping methods are mainly based on
vision-based perception and analytical grasp planning [6],
[7]. Early approaches focus on computing force closure
and form closure grasps using geometric models of objects,
assuming that accurate object shape and pose information is
available [8], [9]. These methods typically use deterministic
grasp planners that generate a fixed grasp pose, assuming the
gripper can reach the computed pose without interference.
However, real-world grasping tasks often involve uncer-
tainties such as incomplete object perception, occlusions,
and dynamic interactions, which reduce the effectiveness of
purely model-based approaches [10], [11].

To address these limitations, data-driven grasping tech-
niques have gained popularity. Deep learning-based grasp
planning methods leverage large-scale datasets to learn grasp
success predictions [12], [13]. Grasping models such as
GraspNet [14] and GQ-CNN [15] have demonstrated promis-
ing performance in generating robust grasps from RGB or
depth images. However, these methods still assume that the
gripper can execute the planned grasp pose precisely and that
the object remains static during the grasp execution, which
is often unrealistic in practical scenarios.

B. Reinforcement Learning for Grasping

Reinforcement learning has been widely used in robotic
manipulation tasks, including grasping, regrasping, and hand
manipulation. Model-free RL algorithms such as Deep Q-
Networks (DQN)[16] , and Proximal Policy Optimization



(PPO) have been applied to learn grasping strategies from
trial-and-error interactions. Recent works have explored RL-
based closed loop grasping, where policies continuously
refine grasp poses during execution . However, most existing
methods rely only on visual feedback, which may not be
reliable in scenarios with occlusions or noisy depth data.

Our work differs from previous RL-based grasping meth-
ods by focusing on tactile-driven policy learning. Instead of
relying on full-state object observations, we use downsam-
pled tactile signals as input, making the policy more robust to
real-world sensor noise. Furthermore, our PPO-trained policy
generates dynamic grasp adjustment parameters, allowing the
gripper to refine its grasp adaptively throughout execution.
This approach enables successful grasping even when initial
grasp predictions are suboptimal, bridging the gap between
static grasp planning and real-world grasp execution.

III. METHOD

This section primarily introduces the tactile feedback
simulation framework and the use of tactile feedback for
adaptive grasping policy training. The proposed framework
enables high-fidelity physics-based tactile interaction mod-
eling, facilitating realistic contact perception within a sim-
ulated environment. Furthermore, we explore how tactile
information can be effectively integrated into policy learning,
allowing for dynamic and adaptive grasping strategies based
on real-time sensory feedback.

Fig. 1. Framework

As shown in Figure 1, we built a tactile simulation frame-
work in MuJoCo, which includes a tactile simulation system
and a robotic hand system. The tactile simulation encodes
physical interactions such as friction, collision, and inertia.
The simulated tactile sensor arrays are placed on the surface
of the robotic hand based on real-life robotic hand designs.
In this study, we adopt the Proximal Policy Optimization
(PPO) algorithm for reinforcement learning (RL) training.
The observation space covers robotic preceptive data, initial
(uncertain) observation of the object pose, and optional
tactile feedback.

A. Tactile Simulation Framework

To enable high-fidelity tactile interaction simulation, we
develop a physics-based tactile sensing framework using Mu-
JoCo. This framework integrates a rigid-body structure with

MuJoCo’s sensor module, enabling the simulation of contact-
based tactile perception. Specifically, when a designated site
within the model makes contact with another object, MuJoCo
computes the interaction forces at the contact point. A touch
sensor is then employed to measure and output these forces
as a scalar value, representing the magnitude of the tactile
interaction.

Fig. 2. Tactile simulation framework

The tactile sensor model is designed to ensure realistic
contact interactions by incorporating a joint mechanism, a
geometric structure, and dynamically stable inertial proper-
ties. The key components of the design are as follows:

B. Joint Configuration for Tactile Deformation

To simulate skin-like deformation upon contact, the tactile
sensor body is equipped with a sliding joint (‘slide‘), allow-
ing controlled displacement along the Z-axis. The primary
joint parameters are defined as follows:

• Damping Coefficient: Regulates energy dissipation, en-
suring smooth movement in response to external forces.

• Stiffness Parameter: Determines the elastic response
of the joint, allowing the sensor to return to its original
position after contact.

a1 +d · (bv+ kr) = (1−d) ·a0 (1)

a1 denote the acceleration, v the velocity, r the position or
residual (defined as O in friction dimensions), k and b the
stiffness and damping of the virtual spring used to define
the reference acceleration aref = −bv − kr. Let d be the
constraint impedance, and a0 the acceleration in the absence
of constraint force.

The formula illustrates how damping and stiffness affect
acceleration, which in turn influences force and ultimately
impacts tactile simulation.

• Rotational Inertia: Affects the dynamic response of
the sensor, influencing its reaction to applied forces.
The moment of inertia is a symmetric 3×3 matrix (unit:
kg·m²), α is a parameter aimed at reducing the discrep-
ancy between sim2real.representing the distribution of
inertia around the three coordinate axes:

I = α ◦

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (2)



• Motion Constraints: Limits the joint’s displacement
range to prevent excessive deformation while maintain-
ing tactile sensitivity.

C. Geometric Representation of the Tactile Sensor

To ensure accurate force distribution and realistic contact
dynamics, the tactile sensor is modeled using a mesh-based
geometric structure with the following attributes:

• Contact Affinity Settings: Defines interaction proper-
ties, specifying which objects can establish contact with
the sensor.

(A.contype & B.conaffinity) ̸= 0
OR

(B.contype & A.conaffinity) ̸= 0

• Surface Friction Properties: Determines resistance to
tangential forces, influencing how the sensor interacts
with surfaces of varying textures. fslide denotes the fric-
tional force during sliding, µ1 is the friction coefficient,
and vt represents the relative tangential velocity.

fslide =−µ1Fn
vt

|vt |
(3)

D. Policy Training

Specifically, we use tactile feedback along with the current
proprioceptive state—including the joint angles of the robotic
hand and the Cartesian pose of its end-effector—as input.
The model then outputs the motion increments for the next
time step, including joint angle variations and end-effector
pose increments.

Furthermore, during the training process, we introduce
random noise to the object’s position to enhance the robust-
ness of the policy. More precisely, instead of placing the
object exactly at a predefined grasping pose (including its
coordinates and joint angles), we add noise to its position in
the simulation environment. This perturbation helps improve
the adaptability of the policy to environmental variations. To
further enhance the generalization capability of the policy, we
include objects of various common shapes, such as cuboids
and spheres, ensuring that the trained policy can be applied
to a broader range of tasks.

To enable stable and effective grasping behavior, we
design a reward function that integrates tactile feedback, joint
motion efficiency, and object pose consistency. The reward
function is formulated to encourage stable contact with the
object, minimized unnecessary hand and finger movements,
and precise object manipulation. It consists of the following
key components.

The overall reward function Rgrasp is then defined as:

Rgrasp = Q f ingertip −Zhand (4)
−Z f joint −Odi f f

−Ddi f f . (5)

Fig. 3. Adaptive grasp

A contact reward term is introduced to maintain stability
during contact. Contact reward term counts the number of
fingertips that actively (T ) make contact with the object and
poses a negative reward of amplitude β to encourage constant
contact:

Q f ingertip = β ×T (6)

[
Z f joint
Zhand

]
=

[
|Gdi f f [7 :]|

|Gdi f f [: 3]|× γ

]
(7)

Here, Gdi f f represents the grasp configuration, encom-
passing both joint and pose differences relative to the target
Z f joint represents the joint deviation of the fingers, while
Zhand quantifies hand displacement during grasping γ is a
scaling factor. Both terms act as penalties, ensuring that
minimal movement is performed to maintain a stable grasp.

Ddi f f represents the positional deviation of the object
from its target location, while Odi f f represents its orientation
error. These terms ensure that the object remains as close
as possible to the intended grasping pose.This formulation
encourages stable grasping by maximizing fingertip contact
while simultaneously minimizing unnecessary movement and
ensuring accurate object positioning. The function is peri-
odically logged for evaluation, providing insights into the
grasping process.

This structured reward function enables the learning of an
adaptive grasping policy by reinforcing stable and controlled
interactions, ensuring efficient manipulation and tactile-based
policy optimization.

IV. EXPERIMENT

A. Training

• Exploration Oscillation Phase : In (a), the reward
values exhibit significant fluctuations between 150 and
−300 before reaching 200k steps, indicating high-
entropy exploratory behavior of the policy network.
In contrast, (b) reflects a lower-entropy exploration
compared to (a)

• Policy Optimization Phase : A distinct inflection
point between 200k and 400k steps in (a) initiates
a monotonic improvement. In contrast, (b) exhibits a
more gradual improvement, beginning at 200k steps and
extending to nearly 1.2M steps.

• Convergence Plateau Phase : the policy in (a) achieves
stable performance, with reward values consistently



Fig. 4. Training porcess: (a) represents the policy incorporating tactile
feedback, whereas(b) depicts the policy trained without tactile.

maintained within the range of [100,150], while (b)
stabilizes within [0,50]. Both satisfy the convergence
criterion:

max
∆≥1k

∣∣∣∣Rt+i −Rt

Rt

∣∣∣∣< 0.05 (8)

B. Comparative experiment

As shown in Figure 5, to systematically evaluate the effi-
cacy of tactile sensing integration, we conducted controlled
comparative experiments under two distinct experimental
conditions: tactile-enabled (TE) and tactile-disabled (TD)
configurations. The experimental protocol involved 100 inde-
pendent trials per condition across four geometrically distinct
objects (column, capsule, ellipsoid, and sphere). Crucially,
these test objects were carefully designed with matched phys-
ical parameters (mass: ± 0.01 kg, volume: ± 5 cm³) to isolate
shape variation as the primary generalization challenge.The
experimental results demonstrate that incorporating tactile
feedback significantly improves the success rate, further
confirming the importance of tactile perception in this task.
Therefore, integrating tactile information is both meaningful
and necessary for enhancing system performance.

Fig. 5. Grasping distinct objects

Tactile No tactile
Column 95% 87%
Capsule 96% 88%
Ellipsoid 92% 89%
Sphere 93% 82%

TABLE I
EXPERIMENT

V. CONCLUSIONS

Experimental results demonstrate that our method enables
the gripper to dynamically adapt its grasp pose in response
to object perturbations, significantly improving grasp success
rates in both simulation and real-world applications.

In summary, the proposed tactile-based adaptive grasping
framework effectively addresses the limitations inherent in
traditional grasping approaches. By leveraging tactile feed-
back, our method enables robust grasping even in scenarios
where visual occlusions occur, mitigating the reliance on
purely vision-based perception. Furthermore, the framework
enhances grasp stability by dynamically adjusting to unex-
pected object perturbations, ensuring reliable manipulation
in unstructured environments. These results highlight the
potential of integrating tactile sensing into robotic grasping
strategies, paving the way for more adaptive and resilient
manipulation systems.
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