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Fig. 1: Structural changes over time in Metropolis. The upper part of the image shows how the city evolves over time through point
cloud maps, where gray points represent unchanged areas and red points indicate structural changes. The lower part of the image illustrates
two scenes captured at the same location, demonstrating how buildings are constructed over time, resulting in different observations.

Abstract— Large-scale construction and demolition signifi-
cantly challenge long-term place recognition (PR) by drastically
reshaping urban and suburban environments. Existing datasets
predominantly reflect limited or indoor-focused changes, failing
to adequately represent extensive outdoor transformations. To
bridge this gap, we introduce the City that Never Settles
(CNS) dataset, a simulation-based dataset created using the
CARLA simulator, capturing major structural changes—such
as building construction and demolition—across diverse maps
and sequences. Additionally, we propose TCRsym, a symmet-
ric version of the original TCR metric, enabling consistent
measurement of structural changes irrespective of source-
target ordering. Quantitative comparisons demonstrate that
CNS encompasses more extensive transformations than current
real-world benchmarks. Evaluations of state-of-the-art LiDAR-
based PR methods on CNS reveal substantial performance
degradation, underscoring the need for robust algorithms capa-
ble of handling significant environmental changes. Our dataset
is available at https://github.com/Hyunho111/CNS dataset.

I. INTRODUCTION

Outdoor environments are dynamic and constantly evolv-
ing, with construction activities reshaping not only building
interiors but also the entire cityscape. In these continuously
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changing environments, relying on static maps for localiza-
tion becomes increasingly difficult. While the Nothing Stands
Still (NSS) benchmark [1] addressed extreme structural
changes in construction sites, it focused primarily on interior
modifications and did not capture large-scale transformations
at the urban and suburban scales. Moreover, acquiring real-
world data that reflects such massive evolutionary changes
over time is impractical due to the long observation periods
and logistical constraints.

To overcome these challenges, we propose the CNS
dataset, which simulates large-scale structural changes in
both urban and suburban environments using the CARLA
simulator [2]. As shown in Fig. 1, we simulate large-scale
transformations such as construction and demolition across
different cityscapes, providing a new benchmark for testing
long-term place recognition (PR). Additionally, we introduce
the TCRsym metric, a modification of the TCR from the NSS
benchmark [1], to quantitatively compare the rate of change
between real-world and our dataset. This enables an objective
comparison of the extent of structural variations, highlighting
the larger-scale transformations captured by our approach.

Our key contributions are as follows:
1) We provides simulation-based dataset which systemat-

ically introduces massive construction and demolition
across multiple maps and sequences, using CARLA to
emulate real-world transformations at scale.

2) We propose a new metric, TCRsym, ensuring symmetric
measurements of structural changes. Comparing real-
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world datasets with ours demonstrates far larger trans-
formations, reinforcing the dataset’s value for long-
term PR.

3) We evaluate state-of-the-art LiDAR-based PR methods
on our dataset and reveal substantial performance drops
under these extreme changes, highlighting the need for
more robust, adaptable algorithms.

II. RELATED WORKS

Numerous datasets containing temporal and structural
variations have been developed to support long-term LiDAR-
based PR. The NCLT dataset [3], which spanned 27 sessions
over a year, captured long-term dynamics including major
construction projects. Similarly, the Oxford Robotcar dataset
[4] extended over a year and a half, reflecting structural
changes caused by city roadworks, while the Boreas dataset
[5] primarily tracked seasonal variations but also included
some construction-related changes. The Mulran [6] and the
HeLiPR dataset [7], collected at the same location with a
four-year gap between sessions, revealed notable structural
shifts. Although these real-world datasets provide valuable
insights, the modifications they depict remain relatively mi-
nor, with permanent structures dominating the scene.

Meanwhile, the NSS benchmark [1] does capture drastic
spatiotemporal changes in construction sites. However, it was
originally focused on point registration and largely confined
to indoor spaces, leaving city-scale outdoor transformations
unaddressed. As a result, the existing datasets—both real-
world and NSS—offer only limited challenges for PR algo-
rithms when faced with massive structural changes.

The CNS dataset is specifically designed to address the
challenges posed by extreme structural changes at the urban
and suburban scale. By leveraging the CARLA simulator [2],
we simulate large-scale transformations, including construc-
tion and demolition processes. This provides a more rigorous
evaluation setting for LiDAR-based PR methods, enabling
the development of robust algorithms capable of handling
massive environmental transformations.

III. THE CNS DATASET

In this section, we present the City that Never Settles
(CNS) dataset, which aims to facilitate the investigation of
long-term PR in highly dynamic environments. By leverag-
ing the CARLA simulator, we are able to emulate signif-
icant structural changes—such as construction and demoli-
tion—across multiple sequences of the same map. The data
was acquired using an NVIDIA GeForce RTX 4070 GPU
and a 13th Gen Intel Core i9-13900HX x 32 CPU.

A. System Configuration

We configure the following virtual sensors in CARLA:
a LiDAR and an IMU. Notably, we do not include a
GNSS sensor because CARLA provides a built-in odometry
message that already serves as a global ground-truth for
vehicle poses. The simulation runs at 20Hz, with all sensor
measurements synchronized at each frame.
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Fig. 2: System Configuration
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Fig. 3: The upper displays aerial views with trajectories over-
laid for Riverside 02, Suburbia 02, Downtown 04, and
Metropolis 04. The below shows all the routes on each map,
with red being the starting point and blue being the ending point.

LiDAR. We employ a 32-channel LiDAR sensor, modeled
after the Ouster OS1 design, mounted on the roof of a
simulated vehicle. The vertical field of view is set to cover
±22.5◦, with a maximum range of 120m. Because the sensor
data is generated within a simulation, each full scan is in-
herently deskewed (i.e., free of motion-induced distortions).

IMU. We employ an IMU that provides ideal ground-truth
inertial data—namely, zero bias and noise.

B. Dataset Generation

To create environments that challenge long-term PR, we
introduce substantial structural modifications in CARLA.
Starting with base maps Riverside, Suburbia,
Downtown, and Metropolis, we manually delete key
buildings, trees, and landmarks using the Unreal Engine
Editor across multiple sequences. As illustrated in Fig. 3,
each modified sequence is then traversed by a scripted
autonomous driving agent following partially overlapping,
yet distinct routes, capturing structural changes from various
viewpoints and ensuring meaningful PR experiments.

C. Sequence Description

Our dataset comprises 4 maps and 12 sequences in total:
Downtown and Metropolis each include 4 sequences
(01–04), while Riverside and Suburbia each contain
2 sequences (01–02). Each sequence reflects a distinct stage
of structural changes, where lower-numbered sequences rep-
resent maps with fewer structures, and higher-numbered
sequences (e.g., 04 or 02) represent the original, fully built
environment. Thus, moving from lower to higher numbers
simulates construction, and from higher to lower numbers
simulates demolition as shown in Fig. 1.
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Fig. 4: Visualization of the set H for Metropolis. The left two
columns illustrate how H changes under the source–target ordering,
causing variations in TCR values. To ensure consistency regardless
of the ordering, we introduce the union of both sets, as shown in
the right column, which remains invariant to the ordering.

TABLE I: Temporal Change Ratio comparison

Map Riverside Suburbia Downtown Metropolis KAIST*

Sequences 01 ↔ 02 01 ↔ 02 01 ↔ 04 01 ↔ 04 01 ↔ 06

TCRsym 0.0986 0.1840 0.1120 0.2920 0.1819

IV. TEMPORAL CHANGE RATIO

We propose the TCRsym (symmetric Temporal Change
Ratio) metric to quantify large-scale structural changes be-
tween sequences. Unlike the original TCR from the NSS
benchmark [1], which is sensitive to the source-target order-
ing, TCRsym ensures consistent measurements of structural
changes irrespective of the ordering. As shown in Fig. 4, the
original TCR can vary depending on the source-target direc-
tion, while the symmetric version eliminates this dependency.
The TCRsym is defined as:

TCRsym = 1−
∣∣O(X(S), X(T ); τ) ∪ O(X(T ), X(S); τ)

∣∣∣∣H(X(S), X(T )) ∪H(X(T ), X(S))
∣∣ ,

(1)
where the unchanged point set O and the convex hull set H
are defined as follows:

O(X(S), X(T ); τ) =
{
x ∈ X(S)

∣∣∣NN(x,X(T )) ≤ τ
}
, (2)

H(X(S), X(T )) =
{
x ∈ X(S)

∣∣∣ConvexHull
(
X(T )

)
= ConvexHull

(
X(T ) ∪ {x}

)}
. (3)

A higher TCRsym indicates more structural changes, such
as significant building construction or demolition, whereas a
lower TCRsym reflects smaller-scale modifications. To focus
primarily on structural rather than transient changes (e.g.,
vehicles, pedestrians), we voxelize the point clouds at a
resolution of 5m and set the distance threshold τ = 4.5m.
This ensures TCRsym predominantly captures large-scale
structural changes rather than transient objects.

Table I summarizes the TCRsym values observed between
sequences in our dataset alongside a real-world comparison.
The KAIST entry represents the structural changes occurring
over more than four years (from MulRan’s KAIST 01 to

Fig. 5: AUC for each baseline as time intervals increase

HeLiPR’s KAIST 06 sequences), aligned using the LT-
SLAM module from LT-mapper [8]. Notably, our dataset
exhibits TCRsym values that meet or even surpass the changes
observed in the KAIST sequences. This highlights the
capability of our dataset to effectively emulate extensive
long-term urban transformations, offering a more rigorous
benchmark for long-term PR research.

V. BENCHMARK RESULTS WITH OUR DATASET

In this section, we evaluate representative LiDAR-based
PR methods—Scan Context [9], SOLiD [10], RING++ [11],
and BTC [12]—on our CNS dataset. We compare these
baselines across varying degrees of structural changes, using
standard metrics such as the Precision–Recall curve, Area
Under the Curve (AUC), Recall at N (R@N ) and the
maximum F1 score along with TCRsym.

For the PR task, we preprocess our dataset as follows.
Query sequences are sampled at intervals of 10 meters along
their trajectories, while database sequences are sampled at 5
meters intervals. Given a query scan, candidate matches are
retrieved from the database based on their spatial similarity.
A candidate is considered a true positive if its Euclidean dis-
tance to the query location is within 7.5 meters. Additionally,
to ensure consistency across methods, each raw LiDAR point
cloud is uniformly limited to a range of [-100m, 100m]. For
evaluating BTC specifically, we merge 10 sequential scans
into one submap as described in the original paper.

Table II provides the AUC, R@N and the F1 score for
each method on different inter-session pairs of our dataset.
Bold and underlined values indicate the best and second-
best performance, respectively. As observed in the Table II
and Fig 5, PR performance decreases as temporal change
increases. This indicates that, as the structural changes in the
environment become more significant, PR algorithms gener-
ally face increasing difficulty in maintaining high accuracy.

However, BTC exhibits relatively consistent performance
regardless of the increase in TCRsym. This can be attributed to
its effective local descriptor construction from the submaps
and the robust verification logic applied during candidate
matching. The recall values of BTC increase steadily, while
maintaining relatively high precision, as seen in the Fig 6.
Despite this, the absolute performance of BTC remains lower
compared to other methods, which suggests limitations in its



TABLE II: Quantitative results for long-term PR

Map DB → query TCRsym

Method

Scan Context++ [9] SOLiD [10] RING++ [11] BTC [12]
AUC R@1 F1 score AUC R@1 F1 score AUC R@1 F1 score AUC R@1 F1 score

Riverside
01 → 02 0.0986 0.1423 0.1271 0.2222 0.0703 0.0678 0.1119 0.8856 0.7664 0.8678 0.4126 0.4538 0.6178
02 → 01 0.1268 0.1695 0.2032 0.1199 0.1356 0.1827 0.8291 0.9626 0.8653 0.2702 0.4091 0.5243

Suburbia
01 → 02 0.1840 0.4480 0.3732 0.5146 0.2066 0.1901 0.3094 0.8974 0.7192 0.8367 0.6359 0.6414 0.7706
02 → 01 0.4699 0.3285 0.4839 0.1442 0.1168 0.2000 0.8872 0.6667 0.8000 0.5479 0.5521 0.6928

Downtown
03 → 04 0.0678 0.3567 0.4560 0.5192 0.5530 0.5520 0.5308 0.9626 0.9816 0.9907 0.2907 0.3828 0.4923
02 → 04 0.1120 0.4734 0.5674 0.5613 0.3007 0.3333 0.3800 0.9422 0.8945 0.9443 0.2554 0.3147 0.4562
01 → 04 0.1674 0.2204 0.2303 0.2833 0.0796 0.1292 0.1402 0.8131 0.7038 0.8262 0.3450 0.4532 0.5986

Metropolis
03 → 04 0.2528 0.6566 0.5185 0.6693 0.4220 0.2963 0.4495 0.9550 0.8721 0.9317 0.5456 0.5605 0.7092
02 → 04 0.2552 0.3566 0.2680 0.4039 0.3015 0.2288 0.3431 0.8341 0.6807 0.8100 0.5658 0.5877 0.7037
01 → 04 0.2920 0.4442 0.2993 0.4623 0.2582 0.2449 0.3512 0.7228 0.5837 0.7371 0.5164 0.5362 0.6756

Fig. 6: Precision–Recall curves of each baseline for Metropolis

ability to handle significant transformations effectively.
In contrast, RING++ stands out with superior performance

compared to the other methods. This can be explained by its
use of Bird’s Eye View (BEV) images, which incorporate
contour information from roads and surrounding distances.
This strategy appears to be highly effective for long-term PR
tasks, as it allows the method to capture broader contextual
information. However, RING++ shows a clear performance
drop as TCRsym increases, revealing a limitation in handling
extreme environmental changes.

In summary, while BTC and RING++ show resilience to
structural changes, they still exhibit significant performance
degradation as TCRsym rises. This emphasizes the need for
further improvements in long-term PR algorithms, particu-
larly in adapting to large-scale transformations.

VI. CONCLUSION

The CNS dataset pushes the boundaries of long-term
PR by incorporating large-scale structural transformations in
both urban and suburban settings, all within a reproducible
simulation environment. Our evaluation of multiple LiDAR-
based PR methods shows that, although certain algorithms
maintain resilience under moderate changes, they experience
pronounced performance drops as TCRsym increases. This
outcome underscores the need for novel descriptors and
strategies that can accommodate massive redevelopment sce-
narios. We hope that by providing reproducible evaluations

and TCRsym-based analysis, our CNS dataset can catalyze
further advances in long-term PR for real-world construction
and demolition tasks.
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