
  

  

Abstract— For robotic crack filling tasks in highway 

pavement maintenance, the crack fillability (achievable filling 

fullness) can vary along its length depending on the flowability 

of the repair material subject to the crack geometry, which 

directly impacts the mechanical performance of the resulting 

repair. Currently, the crack fillability is evaluated using 

trial-and-error-based human experience before field repairs, 

with no efficient ways of transferring this knowledge to a field 

crack repair robot. In this work, we present a computational 

approach to aid in rapid fillability benchmarking of random 

cracks. A customised simulator is developed based on the 

position-based dynamics, capable of automatically evaluating 

the filling performance of a repair material along a crack. Our 

experimental results show that the simulator achieves an 

average crack fillability prediction accuracy of 86.0%, 

especially accurate (> 94%) for more flowable repair materials. 

We believe such computational tool can not only be useful for 

material development, but also contribute to a holistic robotic 

crack repair simulation framework for solving the fundamental 

optimisation problem of pavement maintenance tasks.      

I. INTRODUCTION 

Deploying robotic systems to conduct precise 
crack repair by material filling operations is a 
promising preventative maintenance measure to 
tackle the increasing pavement deterioration 
challenge [1,2]. In our previous work, we 
introduced the particle-based, fast yet approximate 
fluid physics simulation technique, position-based 
fluid (PBF) to guide robotic crack filling operations 
[3]. With PBF simulations, one can predict the 
sub-surface material flow to achieve desired repair 
surface quality. Other work involving PBF-based 
robotic fluid handling can be seen in [4,5].  

Given the nature of cracks in dimensional and 
geometric variance, a repair material can generate 
varying filling fullness if applied at different 
locations along a crack. Understanding the 
fillability of a target crack for a given repair 
material is vital for ensuring material applicability 
and informing necessary material modifications to 
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achieve desired repair surface quality, and optimal 
mechanical performance and durability after repair.  

Currently, crack fillability is assessed using 
human experience, created from a time-consuming 
trial-and-error process in the lab by a material 
scientist; traditional computational fluid dynamics 
methods [6] can be available for this purpose but 
these normally are computationally heavy and fall 
short of a desired speed, making it hard to transfer 
the knowledge to a crack repair robot in the field. In 
this work, we propose an efficient crack fillability 
benchmarking simulator based on the PBF model to 
aid in rapid fillability understanding of random 
cracks. We elaborate on the details of the simulator 
and its validation through experiments. 

II. SIMULATION ESTABLISHMENT 

A. Simulation framework for task optimisation 

The proposed crack fillability benchmarking 
simulator is part of a holistic robotic crack repair 
simulation framework (Figure 1) developed in the 
Digital Roads of the Future initiative. This initiative 
(drf.eng.cam.ac.uk) aims to integrate road digital 
twins, smart materials and robotics to enable 
autonomous highway pavement maintenance. 

 
Figure 1.   The Digital Roads robotic crack repair simulation framework 
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The framework involves three interlinked steps: 

• Step 1: Material simulation maps the physical 
flow behaviour of a repair material into its PBF 
simulation through real-to-sim flow cup test 
calibration (upper part in Figure 1). The flow 
cup test captures the flowability of the material 
by its continuously recorded discharge 
volumes from the bottom hole of a cup under 
gravity over constant time intervals, as 
reported in [7]. The calibrated virtual material 
is then applied to benchmark the fillability of 
given virtual cracks (lower part in Figure 1). 

• Step 2: Process simulation offers a data-driven 
manner via feedback control for accurate and 
fast robotic crack filling processes using the 
calibrated material from Step 1, which then 
informs real-world repair operations [8].  

• Step 3: Task simulation integrates the process 
simulation into a simulated robotic pavement 
maintenance vehicle [9] which completes the 
repair task at the full scale of road pavement. 

The autonomous pavement maintenance task 
can be modelled as a high-dimension optimisation 
problem with multiple constraints (e.g., variable 
lane width and number, uncertain human driving 
behaviour, environmental condition, etc.) and 
objectives (e.g., repair accuracy, repair speed, repair 
cost, etc.). The simulation framework underpins the 
solution to this fundamental and challenging 
optimisation problem.  

B. Crack fillability benchmarking simulator 

A random crack with variable dimensions along 
its length can be treated as an aggregation of finite 
unit-length segments regardless of its geometric 
complexity (a schematic is provided in Figure 2a). 
The fillability concept applies to each of these 
segments and the length of the segment is 
determined according to the required inspection 
resolution. The fillability (Fi) is quantitatively 
defined as the ratio between the fillable space 
volume (Vif) of the associated segment and its entire 
volume (Vi): 

                     Fi = Vif / Vi                             (1) 

We establish the crack fillability benchmarking 
simulator using the NVIDIA Flex simulation 
environment in Unity. Figure 2b shows the 
fillability test setup for an example crack in 
simulation. Provided that advanced sensing 
technologies such as high-resolution LiDAR or 

photogrammetry [10,11] are available for capturing 
the crack geometry, a digital mesh model of the 
crack can always be created and input in the 
simulator for the fillability test. For the Flex 
simulation environment, key parameters (fixed 
timestep, substep count, iteration count, fluid rest, 
gravity, etc.) should be tuned to allow effective 
particle movement computation.  

 
Figure 2.  a) The schematic showing a crack with variable widths and depths, 

divided into multiple unit-length segments with one example segment under 

the fillability test; b) the developed crack fillability benchmarking simulator 

with a stationary material filling nozzle and a moving example crack 

During each simulation run, one unit-length 
segment is extracted from the crack and blocked at 
both ends. A small amount of repair material 
particles (e.g., 5-10 ml), dynamically created by the 
Flex source actor, is deposited (driven by gravity) 
into the crack segment while the filling nozzle stays 
stationary above it. The filling flow rate (e.g., 
0.2-0.8 ml/s) is determined dependent on the 
material flowability. Each run lasts for a designated 
period given the captured segment volume (Vi) and 
the filling flow rate. Right before the end of each 
run, the final positions of particles are checked to 
determine the fillable fluid volume (Vif) and then the 
fillability of this crack segment can be obtained.  

The entire crack shifts from one end to the other 
as segment inspection continues. When all the crack 
segments are inspected, their fillability values will 
be automatically plotted against their locations in 
the crack using Unity’s Python Scripting package, 
showing the fillability of the entire crack. 



  

III. EXPERIMENT 

For validation, we designed a controlled variable 
experiment to investigate the closeness between 
simulated and physical crack fillability test results. 
Considering the real-world challenge of filling thin 
cracks (i.e., < 5 mm wide) in the field, we selected 4 
mm as the target. As mentioned above, we used a 
flow cup test to calibrate the simulated repair 
material intended for use in the fillability test. 

A.  Physical flow cup and crack fillability tests 

A concrete prism was split into ~equally sized 
pieces perpendicular to the long axis of the prism 
and then two adjacent pieces were separated by 4 
mm to generate crack specimens of 4 mm (wide) × 
40 mm (long) × 40 mm (deep), enclosed by a 
aluminium tape on three sides. Four cement mortar 
repair materials were prepared using Rapid Set 
Cement All (RS; KORODUR International GmbH) 
with different volume percentages of polyvinyl 
acetate fibres (PVAF): 0, 0.2, 0.25 and 0.3% (v/v). 

For each crack fillability test, the crack specimen 
was placed onto a digital scale and a repair material 
contained in a cup was manually poured into the 
crack from a height of 2 cm above the crack surface 
with a visually- modulated constant filling flow rate 
recorded by the scale (as shown in Figure 3a). The 
filling was stopped when the repair material was 
level with the crack top surface. For each repair 
material, the fillability test was repeated three times. 
The physical crack fillability test configuration 
parameters are shown in TABLE Ⅰ. 

TABLE I.  PHYSICAL CRACK FILLABILITY TEST CONFIGURATION 

Repair materials for 

different specimens 

Filled 

weight [g] 

Filled weight 

ratio [%] 

Filling flow 

rate [g/s] 

RS_1 16.1 100 1.61 

RS_2 16.2 100 1.40 

RS_3 14.5 100 1.34 

RS_Avg 15.6 100 1.45 

RS+0.2%PVAF_1 13.4 86 - 

RS+0.2%PVAF_2 15.1 97 0.74 

RS+0.2%PVAF_3 12.8 82 0.51 

RS+0.2%PVAF_Avg 13.8 88 0.62 

RS+0.25%PVAF_1 15.1 97 1.02 

RS+0.25%PVAF_2 10.3 66 0.48 

RS+0.25%PVAF_3 7.6 49 0.70 

RS+0.25%PVAF_Avg 11.0 71 0.59 

RS+0.3%PVAF_1 2.5 16 0.69 

RS+0.3%PVAF_2 4.2 27 0.46 

RS+0.3%PVAF_3 12.2 78 0.61 

RS+0.3%PVAF_Avg 6.3 40 0.59 

After the crack fillability test, 10 ml of each 
repair material was prepared to undergo the 
physical flow cup test, although a smaller diameter 
flow cup with a 10 mm discharge hole was used in 

this work. The captured flow cup test data were then 
used to calibrate the material flow in simulation. 

B. Simulated flow cup and crack fillability tests 

For the material calibration in simulation, we 
constructed a virtual flow cup as per the physical 
test. For each repair material, the calibration 
process was repeated 10 times, and each calibration 
process contained 30 iterative virtual flow cup tests 
driven by a Python Bayesian optimizer, resulting in 
one simulated material. This material calibration 
process was the same as that reported in [7]. The 
resulting 10 simulations of each repair material 
were then used in the crack fillability test. 

For the simulated crack fillability test, the virtual 
crack model was prepared according to the physical 
specimen. Instead of using a cup to pour the repair 
material into the cracks in the above physical test, a 
material application cylinder with a nozzle was 
prepared and positioned at the same height as the 
physical test setting to guide material application, as 
shown in Figure 3b. This is a simplified alternative 
to simulating the cup pouring action. 

 
Figure 3.  Comparing a) the physical crack fillability test and b) the virtual 
crack fillability tests of four example simulated repair materials (red box: 

particle generation source; yellow dashed line: constant fluid level observed) 

The key to a successful crack fillability test 
simulation is adaptively modulating the cylinder 
nozzle size and the fluid level in the cylinder to 
match the corresponding filling flow rates measured 
in the physical test. This flow rate control in 
simulation is done by: 1) at the upper part of the 
material application cylinder, generating the fluid 
particles as per the average filling flow rates for 



  

each physical repair material in TABLE Ⅰ; 2) 
blocking the cylinder nozzle for a few seconds to 
allow the particles to accumulate to a certain level; 
and 3) releasing the particles and visually checking 
the particles maintaining a constant level in the 
cylinder during the application process. The 
material application lasted for a calculated time 
based on the filling flow rate and the given crack 
volume, before the final filled material (particle) 
volume was calculated and recorded. 

IV. RESULTS 

Figure 4 presents the comparison between the 
physical and simulated crack fillability tests results. 
The physical results refer to the average physical 
crack fillability data (bold and italic) TABLE Ⅰ; 
while the simulated result of each repair material is 
plotted using the average virtual crack fillability 
data for the 10 simulated materials (from the virtual 
flow cup test). On average, we achieved an 86.0% 
crack fillability prediction accuracy given by the 
‘sim-to-real’ closeness (red dashed line).   

 
Figure 4.  Results of physical and simulated crack fillability tests 

It is observed that the simulation demonstrates 
particularly high prediction accuracies (i.e., > 94%) 
for more flowable repair materials (RS and 
RS+0.2%PVAF). When the material becomes less 
flowable, the simulation prediction accuracy drops 
to around 80% or less; and the larger error bars 
show higher uncertainties in both physical (related 
to mixing and spatial distribution of fibres) and 
simulated results; the simulation also shows a trend 
that the prediction accuracy may gradually decrease 
with the decreasing material flowability until a 
certain flowability is reached where the prediction 
accuracy rebounds. This implies the limitation of 
the current virtual flow cup test in identifying the 
flow behaviour of less flowable materials (due to 
several factors including viscosity, adhesion, etc.) 

as reported in [7]. The prediction accuracy may 
converge with the increase of material calibration. 

V. CONCLUSION 

Targeting robotic pavement crack repair, this 
paper presents a computational simulator for 
automatically identifying the crack fillability for a 
given repair material. The proposed simulated crack 
fillability test is performed on finite crack segments, 
which is experimentally validated by comparing 
with the physical fillability test on a 4 mm × 40 mm 
× 40 mm crack for four different repair materials. 
The results show that the simulator achieves an 
average crack fillability prediction accuracy of 
86.0%. Such simulation shows potential to aid 
material development, and more importantly, forms 
an essential part of a holistic robotic crack repair 
simulation framework for solving the autonomous 
pavement maintenance optimisation problem. 
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