
Deep Reinforcement Learning-Based Predictive Neuromechanical Simulation 
                            for Wearable Robots to Reduce Muscle Effort                                            

               Overview
Exoskeletons have been shown to reduce muscle effort and joint stress, highlighting 
their potential for injury prevention in occupational settings. This research presents a 
deep reinforcement learning-based, closed-loop human-robot interaction framework 
that predicts biomechanical responses and optimizes torque assistance to reduce 
muscle effort. The learned control policy directly maps human kinematics to optimal 
torque assistance. Experimental results demonstrate a 13.04% reduction in hip joint 
torque, a 7.31% reduction in rectus femoris activation, and a 12.21% reduction in 
biceps femoris activation. Real-world implementation of the learned control policy on 
the exoskeleton confirmed its effectiveness in reducing lower-limb muscle activation.
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Hip Joint Torque 31.71 27.6 13.04
Rectus Femoris 0.35 0.32 7.31
Biceps Femoris 0.19 0.16 12.21

• The simulated joint angles and muscle activations closely match 
experimental data, with assist-on conditions showing RMS reductions of 
22.12% for RF and 11.45% for BF, confirming the simulation’s accuracy.

• Our framework offers a generalizable and scalable strategy for the rapid 
development and widespread adoption of exoskeletons for activities such as 
overhead work and lifting in construction. Future work will enhance human-
robot interaction and support the development of more adaptive, 
personalized assistive technologies. 

• Two deep reinforcement learning 
loops (PPO algorithm) optimize action 
control policies: human motion 
control and exoskeleton control. The 
human model’s joint angles and 
velocities are human state (statehum) 
and exoskeleton history actions are 
(stateexo).
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• We analyze the center of mass (CoM) 
position and vertical velocity to assess 
the stability of a deep neural network-
based human walking/exoskeleton 
controller. 

• The results show that the relationship 
between the CoM's linear velocity and 
position is well-clustered during the 
simulation, indicating stable control 
performance of the neural networks.
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• Rewardhuman considers 
the human model’s 
joint tracking 
error(𝜎ang), as well as 
end-effector position 
tracking error ( 𝜎ee).

• Rewardcontrol is designed 
for the exoskeleton 
control neural network to 
reduce muscle 
activation.

• Conducting experimental tests with three human subjects to validate 
simulated joint angles and muscle activations.
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