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Overview
Exoskeletons have been shown to reduce muscle effort and joint stress, highlighting

their potential for injury prevention in occupational settings. This research presents a
deep reinforcement learning-based, closed-loop human-robot interaction framework
that predicts biomechanical responses and optimizes torque assistance to reduce
muscle effort. The learned control policy directly maps human kinematics to optimal
torque assistance. Experimental results demonstrate a 13.04% reduction in hip joint
torque, a 7.31% reduction In rectus femoris activation, and a 12.21% reduction In
biceps femoris activation. Real-world implementation of the learned control policy on
the exoskeleton confirmed its effectiveness in reducing lower-limb muscle activation.
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Results & Future Work
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* Conducting experimental tests with three human subjects to validate
simulated joint angles and muscle activations.

* The simulated joint angles and muscle activations closely match
experimental data, with assist-on conditions showing RMS reductions of
22.12% for RF and 11.45% for BF, confirming the simulation’s accuracy.

* QOur framework offers a generalizable and scalable strategy for the rapid
development and widespread adoption of exoskeletons for activities such as
overhead work and lifting in construction. Future work will enhance human-
robot interaction and support the development of more adaptive,
personalized assistive technologies.
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Hip Joint Torque 31.71 27.6 13.04
Rectus Femoris 0.35 0.32 7.31
Biceps Femoris 0.19 0.16 12.21

Reference: 1) Luo, Shuzhen, et al. "Experiment-free exoskeleton assistance via learning in

simulation." Nature 630.8016 (2024): 353-359.
2) Wang, Mingyi, and Shuzhen Luo. "Al-computing, deep reinforcement learning-based predictive human-
robot neuromechanical simulation for wearable robots." Applied Intelligence 55.6 (2025): 1-19.
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