
  

  

Abstract— We propose a novel framework for building 

indoor air quality monitoring that seamlessly integrates 

multiple large language models (LLMs) with a mobile robotic 

platform. A dedicated bridge node converts natural language 

commands into structured JSON messages, enabling 

non-experts to control navigation and sampling without manual 

coding. In addition, a mid-level verification and scheduling 

module—powered by a second LLM—ensures safe and reliable 

decision-making. Our findings highlight the potential of 

LLM-driven robotics for intelligent building management and 

environmental monitoring. 

I. INTRODUCTION 

Maintaining a comfortable indoor environment is regarded 
as a critical function of buildings, as it can enhance the 
well-being and comfort of occupants [1]. Traditionally, indoor 
environment inspections involve manual data collection at 
various locations within a building. This process is 
labor-intensive, time-consuming, and prone to errors, 
resulting in inefficiency and fragmented data that complicates 
analysis and decision-making [2]. To address labor shortages 
and improve data collection efficiency on construction sites, 
there has been a strong push for the development of robotic 
technologies in the construction sector [3]. Despite rapid 
advances in robotic intelligence, construction sites remain 
complex and unstructured. Depending solely on robots for 
open-ended tasks like on-site data collection is often deemed 
an “impossible mission,” highlighting the need for 
human-robot collaboration [4]. This highlights the urgent need 
for intuitive communication interfaces that enable seamless 
collaboration between data collectors and robotic assistants 
[5]. Nevertheless, the incompatibility of conventional building 
data collection workflows with highly mechanized robotic 
processes has significantly curtailed the research and 
development of robotic solutions [6]. 

Although human-robot collaboration in construction is 
well-studied, most existing research focuses on robot-centric 
tasks, providing limited flexibility in dynamic environments 
[7]. In human-robot collaborative construction teams, most 
robots currently operate at a relatively low level of autonomy 
[8]. Therefore, certain problems remain unaddressed with 
regard to handling unexpected events in on-site data collection: 
(1) How can human researchers directly query the robot in 
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natural language about current air conditions (e.g., “What is 
the PM₂.₅ concentration at this point?” or “Why is the 
concentration in the living room higher than in the corridor?”); 
(2) How can the robot instantly comprehend human-issued 
natural language commands and take action accordingly?; (3) 
Can the robot, when faced with unforeseen circumstances, 
provide feedback to humans and propose optional autonomous 
decision-making plans? Integrating LLMs and multimodal 
sensors into robots offers a precise, immediate approach to 
data collection tasks. The main challenge is creating a system 
that interprets language instructions, controls robots, and 
streams sensor data in real time for further analysis and 
action—redefining building monitoring and maintenance. 

Although several studies focus on enhancing data 
collection and IAQ inspections by improving robotic 
navigation, robot-assisted IAQ monitoring still faces 
limitations—primarily its reliance on digital navigation [9], 
which hampers inspection efficiency and intelligence. Digital 
navigation, which relies on precise numerical inputs and 
geometric maps, requires measuring and inputting accurate 
coordinates for each object. Though accurate, this method is 
time-consuming and labor-intensive [10]. In contrast, 
Semantic navigation is more intuitive and efficient, letting 
inspectors use natural language commands. Voice interaction 
is considered the most natural form of human-computer 
communication [11]. Voice-based natural language 
instructions improve communication accuracy and efficiency. 
Instead of specifying exact coordinates, semantic navigation 
accepts high-level directives, reducing manual effort and 
boosting efficiency. It relies on object recognition, semantic 
reasoning, and real-time sensor data to remain accurate 
without coordinating input [12]. On the sensor side, Robotic 
systems with advanced sensing capabilities have proven 
versatile and effective in various domains, including 
occupancy detection, floor cleaning, surface defect defection, 
and indoor air monitoring [13]. Integrating specific sensors 
and enabling real-time data provision are therefore essential. 

To address the above-mentioned constraints, this study 
develops a method for integrating LLMs and multimodal 
functions on a robot to facilitate real-time human-robot 
interaction and decision-making, aiming to achieve more 
intelligent and efficient IEQ inspections. The layered 
architecture comprises three module layers “Fig. 1”: 

1) High-Level Decision Layer (LLM): Uses a Large 
Language Model (LLM) to parse human natural language 
commands and generate comprehensive task plans in the 
context of environmental information. The LLM receives 
human input, carries out language understanding, semantic 
inference, and knowledge retrieval (optionally interfacing 
with specialized knowledge bases or APIs), then outputs 
commands formatted in JSON. 
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2) Mid-Level Safety Verification and Task Scheduling 
Layer: After receiving JSON commands from the LLM, a 
safety verification or planning-and-scheduling module checks 
logical validity and feasibility. This layer can integrate 
real-time multimodal data to repair or modify any 
“hallucinatory” or unreasonable commands generated by the 
LLM. Simultaneously, it can implement a multi-task 
scheduling mechanism to decide on priorities or queue tasks 
when multiple commands conflict or resources are limited. 

3) Low-Level Robot Control Layer (RC): This layer 
handles the execution of specific motions and actions such as 
navigation or sensor operation. It receives the 
“approved/modified” JSON commands from the upper layer 
and invokes the relevant motion control algorithms (for 
instance, ROS navigation stack or an autonomous controller) 
for execution. 

With a large language model, this framework enables 
non-programmer human workers to interact intuitively with 
robotic assistants, forming a three-way collaboration among 
the human operator, the LLM, and the robot. Not only can 
humans issue commands to robots, but the robots can 
proactively prompt the operator with questions or 
suggestions—relayed and refined by the LLM—to form a 
pipeline of continuous interaction. Mid-level verification and 
scheduling mechanisms significantly reduce the “uncertainty 
and potential risks” that arise from LLM-issued commands, 
thereby making the system more reliable. Robotic technology 
can therefore be safely and effectively integrated into building 
data collection tasks, enabling faster, better decisions in 
unexpected situations.  

Figure 1.  Frame diagram 

 

II. SYSTEM ARCHITECTURE AND METHODS 

A. Overall System Design 

To implement an end-to-end pipeline for indoor air quality 
(IAQ) monitoring via natural language interactions, we 
developed a layered system architecture. The primary 
hardware platform is a TurtleBot4, equipped with (i) a built-in 
RGB-D camera for visual sensing and navigation, (ii) a 
DustTrak (DT) particle counter, and (iii) two CO₂ sensors, S1 
and S2, providing real-time environmental data. For each 
measurement point, sampling was performed over a 

one-minute duration, with DT readings recorded at a 
resolution of one second. 

At the software level, the system integrates a GPT-based 
LLM interface through a dedicated service node within ROS 
2. This node mediates between high-level language 
instructions and the robot’s control framework. Specifically, 
the node translates GPT-generated commands (in JSON 
format) into actionable ROS 2 messages for navigation, sensor 
activation, and data collection. In turn, sensor measurements 
and robot status information are fed back into the LLM node 
or logged for subsequent analysis. This bidirectional 
information flow ensures that environmental data and user 
requests jointly inform how the robot selects its next 
measurement point or adjusts its path during IAQ inspections. 

B. LLM Integration 

1) GPT-based Service Node. We employed GPT as our 
primary large language model, interfacing with it through an 
API that is encapsulated in a custom ROS 2 service node. User 
input arrives as natural language text, which the GPT node 
processes via carefully crafted prompts. The node outputs 
JSON-formatted commands containing fields such as action 
type (e.g., “navigate,” “measure,” “report”), target 
coordinates, sensor parameters, or duration. The ROS 2 node 
then passes these JSON commands to dispatch corresponding 
instructions to lower-level controllers. 

2) Prompt Design and Command Generation. To ensure 
robust and flexible command generation, we designed prompt 
templates that instruct GPT to produce JSON messages 
aligned with our robot’s control logic. For example, an 
operator could say, “Check the air quality near the main 
entrance,” prompting GPT to generate a JSON command 
specifying. 

Such a structure allows us to map high-level linguistic 
tasks to specific operational sequences in ROS 2. The “main 
entrance” identifier can be translated into a set of coordinates 
if preconfigured in a map, and the “duration”: 60 parameter 
triggers a one-minute sampling routine using the DustTrak 
and CO₂ sensors. This modular approach ensures that GPT can 
flexibly generate commands for any recognized location or 
sensor usage scenario. 

C. Natural Language Parsing & Task Planning 

Upon receiving a user command, the system performs the 
following steps: 

1) Semantic Parsing: GPT interprets the user’s natural 
language request, leveraging its language model to produce a 
semantic representation of the task. 

2) Task Decomposition: Based on the parsed context, the 
GPT-based node decomposes the task into sub-actions such as 
navigation, measurement, and data reporting. These 
sub-actions are encoded in the JSON message. 

3) Action Dispatch: The JSON commands are then 
forwarded to the motion control modules within ROS 2. If a 
multi-layer control structure is used, the high-level plan from 
GPT is reconciled with existing navigation stacks (e.g., ROS 2 
Navigation) for path planning and obstacle avoidance. The 
robot’s embedded controllers handle real-time motion control, 



  

while GPT remains responsible for updating the plan if new 
user instructions arrive or sensor data changes significantly. 

  This hierarchical approach enables the LLM to manage 
high-level decision-making and ensures reliable low-level 
execution through standard robotic frameworks. 

D. Air Quality Sensing & Data Processing 

We equipped TurtleBot4 with a DustTrak (DT) sensor, 
sampling particulate matter at a 1-second interval, and two 
CO₂ sensors (S1, S2), each operating over a one-minute 
sampling window at designated measurement points. Sensor 
calibration was performed prior to deployment, and basic 
outlier rejection was implemented to mitigate noise in raw 
measurements. 

      During each measurement cycle, sensor readings are 
stored with their corresponding robot pose (obtained from the 
onboard odometry or SLAM). This positional tagging allows 
us to correlate IAQ data with specific locations within the 
indoor environment. Additionally, these datasets can be 
processed offline or in real time to generate spatial 
distributions or heatmaps of particulate concentrations and 
CO₂ levels. Visualizing these data patterns facilitates targeted 
investigations of potential problem areas or anomalies. 

E. Decision-Making Loop 

After the robot gathers new air quality data, the following 
adaptive decision-making loop is triggered: 

1) Data Analysis: The latest sensor readings—particulate 
matter and CO₂ levels—are passed to either GPT or an 
auxiliary algorithm for further examination. 

2) Adaptive Task Planning: If elevated concentrations are 
detected in a certain region, the system can prompt GPT to 
suggest a refined plan. For instance, GPT may generate a 
JSON instruction to perform additional measurements around 
the hotspot or extend the sampling duration. 

3) Exception Handling: In cases where sensor readings 
appear inconsistent or if the robot encounters unexpected 
obstacles, GPT can either consult the user for clarification 
(e.g., “Should I skip the current measurement point?”) or 
adjust the plan automatically, subject to operator approval. 

4) Execution Feedback: The mid-level ROS 2 nodes 
constantly monitor execution status, providing real-time 
progress updates and sensor feedback to the GPT service 
node, closing the loop for continual refinement of the IAQ 
inspection strategy. 

 Through this iterative process, the LLM-driven framework 
remains context-aware and capable of responding to 
unforeseen conditions, which is especially critical in dynamic 
indoor environments. By integrating natural language 
interaction, JSON-based command generation, and 
multi-sensor data processing, our system offers an intuitive 
and adaptive solution for performing IAQ monitoring tasks 
with minimal human intervention. 

 

III. EXPERIMENTAL SETUP  

A. Environment and Hardware 

Our experiments were conducted in a laboratory “Fig. 2”, 
designed to simulate a typical office environment. The space 
has minimal obstructions aside from standard office furniture, 
providing ample room for robot navigation. As depicted in the 
layout, we arranged 39 sampling stations (labeled P1 to P39) 
at intervals of approximately 1–3 ft to capture a range of air 
quality data points room “Fig. 3”; the room door was kept 
open throughout the experiment to allow for natural airflow. 

We used Turtlebot4 as the base robotic platform. The robot 
is equipped with: 

• An on-board Intel® CPU (Quad-core, 1.8 GHz) and 4 
GB RAM for local computation. 

• A built-in RGB-D camera for environmental sensing and 
navigation. 

• A DustTrak (DT) particle counter and two CO₂ sensors 
(S1 and S2), positioned so as not to obstruct the robot’s 
mobility or camera field of view.  

 

Figure 2.  Experimental environment 
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Figure 3.  Sampling point setting 

Sensor placement was configured to ensure minimal 
interference with the robot’s center of gravity while still 
allowing air intake without obstruction. All sensor data were 
timestamped and logged with associated robot poses, enabling 
subsequent correlation of IAQ measurements with location 
information. 



  

B. Evaluation Protocol 

To assess the effectiveness of our LLM-driven robotic 
system, we designed several tasks reflecting common indoor 
inspection scenarios: 

1) Localized Sampling: The robot receives a 
natural-language command (e.g., “Navigate to the window 
area and measure the air quality, pausing every minute for a 
sampling period”). The LLM generates a structured command 
containing the action type (e.g., “navigate,” “measure”), the 
target location, and sensor parameters. This JSON command 
is then interpreted by the ROS2 nodes for execution.  

The system evaluates whether it can parse and execute 
each subtask——navigating, sampling, and reporting 
accurately and on schedule. This figure shows CO₂ 
concentration measured by two sensors (S1 in blue and S2 in 
pink) between 11:15 AM and 12:00 PM. The robot collected 
these readings while navigating and performing intermittent 
sampling, illustrating successful execution of natural language 
commands for environmental monitoring “Fig. 4”. 

 

Figure 4.  The results of our experiment 

2)   Room Patrol: The robot is instructed to traverse the 
entire room, stopping at predetermined stations to collect 
particulate and CO₂ data. Once completed, it identifies 
potential “hotspots” of elevated pollution levels. 

3)    Baseline Comparison: 

We compare our approach to a baseline system that uses 
manually programmed waypoint navigation without natural 
language capabilities. Key evaluation metrics include 
instruction parsing accuracy, task completion time, and 
context awareness. These metrics quantify the efficiency and 
flexibility of LLM-based guidance compared to conventional 
scripted approaches. 

IV. RESULTS EXPECTATIONS AND DISCUSSION 

       In this work, we introduced a multi-LLM driven 

approach for real-time IEQ inspections, showcasing how 

natural language commands can flexibly coordinate robotic 

navigation, sensing, and decision-making. Unlike traditional 

sensor networks, which are often static and lack adaptive path 

planning, our LLM-driven system provides several key 

advantages: 

   Flexibility: Allows operators to dynamically adjust 

inspection tasks without pre-programming specific routes or 

sensor triggers. 

   Context Integration: Seamlessly integrates multimodal 

sensor data with semantic information, enabling real-time 

decision-making based on location, sensor readings, and task 

priorities. 

    Efficiency and Precision: Reduces overall task 

completion time by integrating decision-making directly into 

the command pipeline, minimizing the need for manual 

intervention. 

    Looking ahead, we plan to integrate additional sensor 

modalities, explore on-device LLM inference for enhanced 

responsiveness, and investigate multi-robot collaboration to 

further expand the system’s coverage and efficiency in 

complex indoor environments. 
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