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Abstract— Augmented reality (AR) applications for construc-
tion monitoring rely on real-time environmental tracking to
visualize architectural elements. However, construction sites
present significant challenges for traditional tracking meth-
ods due to featureless surfaces, dynamic changes, and drift
accumulation, leading to misalignment between digital models
and the physical world. This paper proposes a BIM-aware
drift correction method to address these challenges. Instead of
relying solely on SLAM-based localization, we align ‘‘as-built”
detected planes from the real-world environment with ‘as-
planned” architectural planes in BIM. Our method performs
robust plane matching and computes a transformation (TF)
between SLAM (S) and BIM (B) origin frames using optimiza-
tion techniques, minimizing drift over time. By incorporating
BIM as prior structural knowledge, we can achieve improved
long-term localization and enhanced AR visualization accuracy
in noisy construction environments. The method is evaluated
through real-world experiments, showing significant reductions
in drift-induced errors and optimized alignment consistency. On
average, our system achieves a reduction of 52.24% in angular
deviations and a reduction of 60.8% in the distance error of
the matched walls compared to the initial manual alignment
by the user.

I. INTRODUCTION

The integration of Augmented Reality (AR) and Build-
ing Information Modeling (BIM) has improved construction
monitoring by enabling real-time visualization of digital
models on physical construction sites, allowing early de-
tection of design issues and preventing costly errors [1].
Current AR applications typically rely on manual initial
alignment, where users align a wall plane in the physical
world with its corresponding BIM counterpart using a fixed
geometric transformation. This process serves as a common
baseline for AR-based construction applications, but it leads
to drift accumulation over time and causes a progressive
misalignment between the BIM model and the physical
environment.
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Room From Top View

Fig. 1: SLAM-Based Plane Detection and BIM Alignment
for AR Visualization. From the top view, different camera
poses are shown, and in the right side, real-world camera
images are displayed with detected planes.

Recent approaches have tried to optimize localization
in construction environments. Blum et al. [2] developed
a system that optimizes location for construction robots,
nevertheless, it lacks real-time integration with structural
models, crucial for accurate AR monitoring. Kuang et al.
[3] introduced IR-MCL for localization, but did not integrate
BIM or any semantic context. In contrast, Real-Time Local-
ization and Mapping with BIM [4] effectively utilizes both
BIM and semantic data for improved localization; however,
it relies on LiDAR, which is computationally intensive and
performs poorly on reflective surfaces, limiting its suitability
for lightweight, real-time mobile AR applications.

In this context, RGB-D cameras, which combine color and
depth information, have emerged as a popular alternative for
AR-based applications due to their lightweight and afford-
ability. While less precise than LiDAR, they enable real-time
local depth-based alignment, making them ideal for portable
devices like smartphones and tablets [35].

Although existing visual methods such as GS-SLAM [6]
and RTG-SLAM [7] offer valuable solutions to improve lo-
calization and map reconstruction, they do not use the seman-
tic information retrieved throughout the mapping procedure.
In contrast, vS-Graphs [8] enhances scene comprehension
by integrating semantic understanding, but, like the other
methods, it does not incorporate BIM structural information
for precise alignment and better contextualization of the
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Fig. 2: Overview of the system. Our approach extracts planar structures from SLAM and BIM models, applies robust plane
matching, and computes a transformation (TF) using a Least Squares-based optimization method to minimize drift.

environment.

Construction sites present challenges for visual SLAM due
to textureless surfaces and dynamic elements such as workers
and vehicles, which disrupt feature tracking and cause drift
accumulation [9]], misaligning SLAM maps with BIM [10].
To address this, we propose a BIM-aware drift correction
method for AR monitoring, using camera-based localization
integrated with BIM constraints for better drift correction and
long-term positioning. As shown in Figure [T} our approach
focuses on visualizing the elements of the construction site
by aligning the extracted planes from different camera poses
with BIM data, ensuring an accurate correspondence between
physical and digital environments. Key contributions:

o BIM-aware localization for long-term positioning by in-
tegrating architectural data with real-time data obtained
during application run.

e A dynamic transformation estimation approach that
continuously updates the alignment between BIM and
SLAM reference frames, reducing drift over time.

o Real-world evaluation of BIM-aware drift correction
by detecting wall deviations in AR-based construction
monitoring.

II. SYSTEM OVERVIEW

Inspired by localization techniques such as [4], [[10], we
propose a camera-based localization algorithm that incorpo-
rates BIM data to correct drift and optimize localization
accuracy. The proposed system consists of three primary
components:

Environment Mapping. We map planar structures in real
time using a camera (C), extracting relevant planes from the
environment and relate them to S (see Figure |Z| (b), (d)).

BIM Data Processing. We extract and process structural
data from BIM such as walls to match the detected planes
from the real environment (see Figure [2] (a), (c)).

Plane Matching and Transformation Estimation. We
match the detected planes with the architectural ones and

then compute the difference orientation between them. This
allows us to calculate a transformation (TF) that aligns the
reference frames, minimizing the rotation and translation
errors of the detected walls (see Figure |Z| (e), (D).

To ensure accurate alignment and minimize drift, our
system uses a distance-based filtering technique to establish
precise correspondences between the “as-built” and “as
planned” walls. An iterative optimization process then com-
putes the optimal transformation to align the reference frames
and dynamically correct the drift. By continuously integrat-
ing new detected planes, we refine the alignment over time,
ensuring long-term stability and reducing misalignment.

III. METHODOLOGY

A. BIM-Based Plane Extraction and Matching

Plane detection is performed using a pre-trained model
within a mobile application. Aligning the “as-built” and “as
planned” planes is crucial for reducing drift and enhancing
localization accuracy. Our method addresses this by employ-
ing a BIM-constrained plane matching technique, ensuring
geometric consistency between the two sets of planes. We
apply a Mahalanobis distance-based filtering approach to
robustly select matching candidates. This method effectively
compares plane geometry, making it resilient to noisy or
obstructed environments, and accounts for uncertainty in
plane parameters to ensure the most probable matches, even
under challenging conditions.

To improve efficiency, plane matching and TF estimation
are performed only on keyframes with new or updated
planes, avoiding unnecessary computations and maintaining
accurate alignment. To determine if a BIM wall spans
multiple rooms, we calculate the intersections between walls.
If they overlap, we split the wall into separate sections,
ensuring a one-to-one correspondence between the “as-built”
and “as-planned” planes, thus improving matching accuracy
and reducing alignment errors.



For a detected SLAM plane s; and a candidate BIM plane
b;, the Mahalanobis distance is computed as:

Da(si,b:) = (85 — bi)Tzil(si —b;) (D

where X is the covariance matrix that captures the uncer-
tainty in plane detection. A candidate plane b} is considered
a match for s; if the distance is below a certain threshold 7:
Dp(si,b7) <7 )
To reduce mismatches in feature-poor environments, we
refine associations with geometric filters such as corner
proximity, center alignment, and area to ensure structural
consistency.

B. Optimization-Based Drift Correction

As illustrated in Figure [3] our approach defines an error
function that measures the transformation between matched
planes to correct drift, as explained in Equation (3).
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The error, defined as biTsi, represents the transformation
from the “as-built” plane to the “as-planned” plane. The
term BT}, denotes the BIM plane in B, while T is the
transformation between the origin frames. T represents
the pose of the camera relative to S, and CTsi is the plane
detected by the camera.

With the objective of minimizing the error between the
matched planes, the transformation BTy is iteratively de-
fined. This process is implemented using the Least Squares
Method and a Gauss-Newton solver with a Dense Singular
Value Decomposition (SVD) backend. This optimization is
formulated as:
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We handle uncertainty in perpendicular translations by
using at least three linearly independent planes, providing
additional constraints to accurately estimate translation in all
directions.

In this work, the initial manual alignment serves as a base-
line, simulating typical AR-based construction applications
where users align the first BIM planes with physical walls.
We match the first detected planes to their BIM counterparts
using known wall IDs. This baseline enables comparison
with dynamic transformation approaches, reflecting typical
user interaction at the start of AR applications.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

We evaluated our method in four real-world environments:
two offices and two construction sites, using RGB-D camera
data. The BIM data served as reference for the “as-built”
planes. The evaluation metrics include the average distance
error and the angular deviation of the matched planes,
evaluating the alignment of SLAM-detected planes with BIM
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Fig. 3: Defined reference frames for this work.

planes. We tested three variants based on the number of
planes used for transformation estimation:

Initial Manual Transformation. Manual BIM alignment
at the start with no further adjustment.

Global Transformation. Uses all matched planes for
dynamic transformation.

Local Transformation. Uses nearby planes visible to the
camera to calculate the dynamic transformation, gradually
including more planes if necessary until a defined limit.

B. Results and Discussion

Due to the strict page limit, we only present two of the four
environments (1 office and 1 construction site) in Figure
In both environments, the local transformation variant con-
sistently outperforms the global and initial transformation in
terms of distance error and angular deviation. This outcome
was expected, as the graph plots errors of local matched
planes, because the focus of this work is on visualizing the
deviations of the planes observed around the camera in each
keyframe.

The evaluation reveals an average reduction of 52.24%
in angular deviations and 60.8% in distance error across
the four environments when using the local transformation
approach, compared to the initial manual one. Notably, as
environmental noise increases or as the application runs for
longer periods, the reduction in deviations becomes more
significant, emphasizing the robustness of our approach in
challenging conditions.

Although absolute trajectory errors cannot be computed
due to the lack of a ground truth trajectory, Figure [5] qualita-
tively illustrates the improvement of our method in a specific
scenario of one of the construction sites in which the initial
manual transformation method experiences significant drift,
with the camera pose trajectory intersecting the BIM planes,
an unrealistic result due to drift accumulation. In contrast,
the Local Transformation configuration effectively mitigates
this issue, ensuring a more accurate alignment throughout
the trajectory.

V. CONCLUSION

This paper introduces a BIM-aware localization method
for AR-based construction monitoring, minimizing drift and
improving alignment between “as-built” and “as-planned”
planes. Using a transformation to dynamically adjust the
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Fig. 4: Comparison of rotation and translation errors across two environments using three transformation estimation variants.

S : SLAM Origin
B : BIM Origin

(a) Initial Manual Transformation

('S : SLAM Origin
B : BIM Origin
C: Camera Pose|
: BIM Walls

:SLAM Walls
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Fig. 5: Comparison of camera pose trajectories. The left figure shows significant drift with the baseline method, colliding
the walls in BIM, while the right one demonstrates the improved alignment with the Local Transformation approach.

reference frame of BIM based on local matched planes, it
outperforms traditional initial manual alignment by reducing
orientation errors. The results demonstrate its effectiveness in
real-time AR visualization, especially in noisy environments.
A limitation of this work is the assumption that real-world
planes have no construction deviations and align with BIM
planes perfectly; future work will address this by incorpo-
rating uncertainties for such discrepancies and expanding to
other construction elements.
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