
  

  

Abstract— Proactive Human-Robot Collaboration (HRC) in 

construction holds transformative potential for enhancing 

operational fluency by enabling robots to anticipate human 

intentions—a capability termed collaboration request prediction. 

However, current HRC systems predominantly rely on 

deterministic, single-human action prediction models. These 

approaches are unable to account for the inherent uncertainties 

in dynamic, multi-human interactions and long-term predictions, 

risking inappropriate robotic actions when predictions are 

overtrusted. Despite the critical need for robust Uncertainty 

Quantification (UQ) in such high-stakes, dynamic environments, 

discussions on UQ for HRC in construction remain limited. To 

bridge this gap, we propose a holistic uncertainty-aware 

framework for long-horizon multi-human action anticipation. 

We address the central question: What uncertainty—epistemic 

(stemming from model ignorance or atypical data), aleatoric 

(intrinsic to human behavior and environmental noise), or 

both—are most critical for robust long-term action anticipation 

in multi-human HRC? Our approach explicitly disentangles 

epistemic uncertainty and aleatoric uncertainty through a 

combination of Monte Carlo dropout for epistemic uncertainty 

estimation and heteroscedastic modeling for input-dependent 

aleatoric uncertainty quantification. Additionally, we explore 

evidential deep learning to model both uncertainties 

simultaneously via learned distributional parameters. Empirical 

validation on real-world scaffolding datasets reveals that explicit 

modeling of both uncertainties improves prediction reliability 

and decision-making resilience. These findings underscore the 

necessity of holistic UQ in deploying adaptive, trustworthy HRC 

systems within complex, dynamic construction environments. 

  

I. INTRODUCTION 

Inherently hazardous and rapidly changing environments 
like construction sites present unique challenges—and 
opportunities—for Human-Robot Collaboration (HRC) [1]. 
By partnering with robots, construction teams can potentially 
achieve greater productivity, safety, and efficiency [2]. Yet, 
realizing this potential requires moving beyond robots as mere 
reactive assistants that are limited to responding to immediate 
human actions. Instead, robots must become proactive 
collaborators, capable of anticipating future requests and needs, 
and participating in dynamic multi-agent interaction processes 
[3]. 

Proactive HRC demands robotic systems that not only 
interpret real-time human actions but also forecast upcoming 
tasks, collaborative needs, and group dynamics over extended 
time horizons. For instance, robots may require up to 15 
seconds to complete preparatory actions, such as Atlas 
retrieving and positioning a plank [4], underscoring the 
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necessity for foresight to align assistance with evolving 
workflows. This anticipatory capability enables preemptive 
adaptation, minimizes disruptions, and facilitates seamless 
integration into human-centric teams. 

Yet, long-term action anticipation in multi-worker 
construction settings is inherently uncertain. Sources of 
ambiguity include variable human behaviors, robot sensor 
limitations, and task ambiguities (e.g., overlapping or 
ill-defined workflows) [5]. These challenges manifest as two 
distinct types of uncertainty in robot decision-making: 

• Epistemic uncertainty, arising from incomplete 
knowledge (e.g., sparse training data for rare activities or 
unconventional task sequences). 

• Aleatoric uncertainty, stemming from intrinsic 
randomness in sensory inputs or human pacing variability. 

To manage the inherent ambiguity of long-horizon 
reasoning, models must explicitly quantify the uncertainty, as 
it helps achieve transparent and trustworthy decision-making 
in HRC. However, existing approaches to long-term action 
anticipation for HRC typically rely on deterministic models 
that produce single-point predictions without associated 
confidence measures [6]. While other studies on single-agent 
action anticipation have explored uncertainty quantification, 
they often focus on either epistemic or aleatoric sources in 
isolation [7], [8], [9]. This gap make it unclear on the distinct 
and combined impact of both uncertainties on the long-term, 
multi-human action anticipation context. To fill these gaps, we 
introduce a unified, uncertainty‑aware framework for 
long‑term, multi‑worker action anticipation. Our contributions 
are: 

(1) A baseline model that predicts collaboration requests 
among multiple workers over extended time horizons. 

(2) A systematic comparison of epistemic and aleatoric 
uncertainty estimation strategies within the same 
framework. 

(3) Empirical validation on real‑world scaffolding 
construction videos, demonstrating the strength of 
uncertainty-aware decision-making. 

II. PROBLEM FORMULATION 

Given a short video clip , where K denotes 

the number of frames, C the channel dimension (e.g., RGB), 

and H×W the spatial resolution, we propose a framework to 

jointly infer human-centric attributes and enable proactive 

robotic assistance. The goal is to learn a model f that, for each 

detected worker i, predicts: (1) the current action label 
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, (2) a binary role  that can be 

generalized to bystander (0) or scaffolder (1), (3) a sequence 

of T future actions , and (4) temporally 

grounded action start times  and uncertainty estimates  

(aleatoric, epistemic, or both) for each future action t. To 

ensure robustness, predictions are filtered using confidence 

( ) and uncertainty ( ) thresholds, discarding 

low-confidence or high-uncertainty outputs. The remaining 

predictions are prioritized into a future action request queue Q 

by combining temporal urgency (earlier ) and initiative 

support (prioritizing scaffolders). Finally, the robot executes 

assistance actions in the order of Q, dynamically updating the 

queue as new video data arrives.  

 

 

Figure 1. Framework of the proposed multi-human long-term action anticipation baseline. 

III. METHODOLOGY 

A. Multi-human Long-term Action Anticipation 

Building on existing action detection models capable of 
advanced multi-human action localization and classification, 
we propose a framework for multi-human long-term action 
anticipation. Unlike auto-regressive approaches—which 
perform stepwise, conditional predictions prone to error 
propagation and entangled uncertainty estimation—we 
formulate intention anticipation as a fixed-horizon, parallel 
action-duration prediction task. This parallel approach directly 
models the global joint distribution of actions and durations, 
explicitly decoupling aleatoric and epistemic uncertainties 
while avoiding the computational inefficiency of iterative 
predictions. Fixed-horizon prediction further enhances 
practicality in multi-human construction scenarios, where 
autoregressive methods incur prohibitive computational costs 
due to repeated forward passes.  

The network structure is shown in Fig. 1. Our framework 
adapts the ACAR model [10], chosen for its explicit modeling 
of multi-human interactions critical to collaborative 
construction tasks. The backbone integrates YOLOv12 [11] 
for human detection and SlowFast R-50 [12] for 
spatiotemporal feature extraction. The original ACAR action 
detection head is extended to classify worker roles (e.g., 
scaffolder vs. bystander), reducing noise from irrelevant 
personnel in intention anticipation. The action anticipation 
head employs two parallel MLPs: one predicts ten future 
actions, while the other estimates their corresponding start 
times. These ten horizons, spanning the main scaffold 
assembly workflow, balance granularity and computational 
feasibility. 

B. Uncertainty Estimation 

 In this section, we present the uncertainty modeling 

strategies categorized into three types: epistemic, aleatoric, 

and a combination of both. It’s important to note that these 

strategies are applied solely to the action prediction branch, 

excluding the duration branch. This approach is designed to 

prevent interference from the other branches and to ensure 

training stability. 

1) Epistemic Uncertainty Only 

Epistemic uncertainty reflects our lack of knowledge about 

the true model parameters and can be reduced with more data. 

Common techniques for capturing this form of uncertainty are 

Monte Carlo (MC) dropout and deep ensembles. Balancing 

training complexity and inference-time efficiency, we opt for 

MC dropout due to its simplicity, minimal computational 

overhead, and seamless integration into existing architectures. 

 

2) Aleatoric Uncertainty Only 

 Aleatoric uncertainty captures the irreducible noise in the 

data—the variability inherent to the observations themselves. 

It splits into two types [13]: homoscedastic uncertainty, which 

is constant across all inputs (e.g. sensor noise of fixed 

magnitude), and heteroscedastic uncertainty, which varies 

with each input (e.g. some scenes or actions are intrinsically 

more ambiguous than others). 

In an action anticipation setting, heteroscedastic 

uncertainty is especially important: for instance, when a 

worker is installing a cross‑brace, the next action is fairly 

predictable (low uncertainty), whereas a worker merely 

wandering yields much greater ambiguity (high uncertainty). 

To model this, we equip our network—parameterized by 

W—to predict, at each future horizon i, both a vector of logits 

 and a variance parameter scaling input-dependent 

noise. The logits are perturbed with Gaussian noise, as shown 

below: 

 . (1) 

The perturbed logits  are normalized via a softmax function 

to generate a probability distribution over actions: 

 . (2) 

Training the model involves a Monte Carlo sampling 

approach to approximate the expected log-likelihood of 



  

actions. For each input i, T noise samples are 

drawn to perturb the logits: 

 . (3) 

The loss function marginalizes over these samples to 

encourage learning of input-specific variances: 

 , (4) 

where c indexes the ground-truth action class. This strategy 

enables the model to distinguish high-confidence predictions 

(e.g., tool retrieval) from uncertain ones (e.g., ambiguous 

movements). 

 

3) Both Epistemic and Aleatoric Uncertainty 

Combining epistemic and aleatoric uncertainty 

quantification is critical for robust decision-making in HRC. 

While MC dropout offers a straightforward approach by 

sampling stochastic forward passes to estimate epistemic 

uncertainty—and can be combined with aleatoric uncertainty 

modeling—this method incurs significant computational 

overhead due to repeated inference steps. Alternative 

frameworks, Evidential Deep Learning (EDL) [14], provide a 

more unified solution by directly modeling both uncertainty 

types through probability distributions, inspired by Bayesian 

statistics and Dempster-Shafer theory. EDL replaces 

conventional softmax outputs with parameters of a Dirichlet 

distribution, which represents the model’s belief over class 

probabilities. For a classification task with K classes, the 

model predicts concentration parameters , 

where  reflects the evidence for class k. Key metrics 

derived from these parameters include: 

 Total evidence: , quantifying the overall 

confidence in predictions. 

 Expected probability: , the normalized class 

probability. 

 Epistemic uncertainty: , inversely proportional to 

total evidence, capturing model ignorance. 

 Aleatoric uncertainty: , measuring 

inherent data noise via the entropy of expected 

probabilities. 

The EDL loss combines two components to balance data 

fitting and uncertainty calibration, Bayes risk loss for data 

fitting and Kullback-Leibler (KL) divergence to penalize 

incorrect evidence: 

  (5) 

where  denotes ground-truth one-hot label,  and 

represent digamma and Gamma functions, respectively, and 

 is annealing weight. 

IV. EXPERIMENT 

A. Experimental Setup 

Experiments used real-world videos of duo-worker 

scaffolding construction, featuring flexible task flows and 

occasionally unrelated workers. The dataset consists of 33 

videos (~70 minutes total), annotated with 11 action labels 

and split 4:1 for training and testing. We assume a robot 

assistant capable of simple tasks like transporting jack plates 

or cross braces and stabilizing vertical frames. Based on the 

Atlas robot’s speed (15s to transport a baseplate), we allocate 

20s of preparation time for the robot to initiate supportive 

actions. 

B. Evaluation Metric 

 We evaluate performance using frame mean Average 
Precision (frame-mAP) for action detection, top-1 accuracy for 
action prediction, and Mean over Class (MoC) accuracy for 
action anticipation. Uncertainty is quantified via Expected 
(ECE) and Maximum Calibration Error (MCE). For 
collaboration request prediction—determining when and what 
assistance to provide based on anticipated worker intent and 
confidence thresholds—we use mAP@0.5:0.95tIoU.  

C. Qualitative Results 

The visualization of the inspection results is shown in Fig. 2. 

The worker’s locations, role, current and future actions, and 

corresponding start times and uncertainties are predicted. 

 
Figure 2. Visualization of multi-worker long-term action anticipation. 

D. Quantitative Results 

 Table I summarizes the baseline model’s performance. It 

achieves strong action detection (frame-mAP: 0.936), with 

moderate yet acceptable performance in action prediction and 

anticipation, likely due to worker behavior uncertainty and 

long prediction horizons. These results collectively confirm 

the model’s reliability. 

TABLE I.  MULTI-HUMAN LONG-TERM ACTION ANTICIPATION. 

Action detection  Action prediction  
Action 

anticipation  

Class label f-mAP Prediction Accuracy Temporal MoC 



  

horizon horizon 

gather cross 
brace 

0.998 
fut-0 

(current) 
0.924 3s 0.735 

gather jack 

base 
0.811 fut-1 0.814 5s 0.692 

gather vertical 

frame 
0.927 fut-2 0.550 10s 0.639 

gather walking 

frame 
0.834 fut-3 0.469 15s 0.628 

hold vertical 
frame 

0.880 fut-4 0.527 20s 0.623 

install cross 
brace 

0.987 fut-5 0.485 30s 0.601 

install jack base 0.959 fut-6 0.512 50s 0.591 

install vertical 
frame 

0.970 fut-7 0.340 100s 0.572 

install walking 
frame 

0.963 fut-8 0.379 200s 0.566 

walking/idling 0.998 fut-9 0.359 - - 

Overall 0.936 Overall 0.558 Overall 0.566 

E. Uncertainty Estimation Results 

Through systematic comparison of different uncertainty 

modeling strategies implemented on our baseline model, we 

draw three key conclusions from the results presented in Table 

2. First, joint modeling of both epistemic and aleatoric 

uncertainties yields performance improvements in both action 

prediction and anticipation accuracy compared to the 

uncertainty-agnostic baseline. Second, uncertainty modeling 

enhances probability calibration, as evidenced by reduced 

ECE and MCE, indicating better alignment between predicted 

probabilities and empirical likelihoods. Third, the result 

reveals that aleatoric uncertainty constitutes the dominant 

component, as models incorporating only aleatoric 

uncertainty achieve comparable performance to those 

modeling both uncertainty types. These findings collectively 

demonstrate that while both uncertainties contribute to 

prediction quality, aleatoric uncertainty plays the primary role 

in long-term multi-human action anticipation scenarios.  

TABLE II.  UNCERTAINTY ESTIMATION. 

Task (Metric) Baseline Epistemic Aleatoric 
Aleatoric+ 
Epistemic 

EDL 

Action 

prediction 
(Accuracy) 

0.558 0.559 0.626 0.626 0.635 

Action 

anticipation 

(MoC@40s) 

0.591 0.588 0.596 0.594 0.598 

ECE 0.385 0.384 0.158 0.161 0.158 

MCE 0.456 0.745 0.219 0.224 0.197 

Collaboration  

request 
prediction 

(mAP) 

0.161 0.154 0.170 0.176 0.178 

a. Under the optimal confidence threshold 

V. CONCLUSION 

This paper presents an uncertainty-aware framework for 

robust collaboration request prediction in multi-human 

construction scenarios. We develop a novel baseline model 

capable of long-term multi-human action anticipation, and 

systematic evaluation of epistemic and aleatoric uncertainty 

quantification for improving prediction reliability. 

Experimental results demonstrate that joint modeling of both 

uncertainties yields optimal performance, with aleatoric 

uncertainty playing the dominant role in dynamic construction 

environments. Future work will focus on developing more 

sophisticated baseline models, collecting and evaluating on 

more diverse, in-situ multi-worker interaction datasets. These 

directions will further bridge the gap between laboratory 

validation and practical deployment of uncertainty-aware 

HRC systems in complex construction environments. 
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