
LLM-PCPP: Large Language Model-Assisted 
Prioritized Coverage Path Planning for Complex 
Environments
Zhaofeng Hu, Ci-Jyun Liang
Department of Civil Engineering, Stony Brook University
zhaofeng.hu@stonybrook.edu, ci-jyun.liang@stonybrook.edu 

Efficient Coverage Path Planning (CPP) is vital for robot operations[1] in complex 
environments, ( e.g. construction sites and warehouses.) Traditional uniform CPP 
leads to inefficient resource use and redundant scans.
We propose LLM-PCPP, a novel Prioritized CPP[2], [3], [4] method that integrates Large 
Language Models (LLMs) to dynamically identify Points of Interest (POIs) from 
semantic grid maps and optimize traversal using a hybrid LLM-A*[5] + TSP strategy.

1.Semantic Grid Map Construction
•Real-world scenes (e.g., drone footage) → 2D grid maps with binary navigability
•Grid cells contain spatial & semantic info (natural language labels)

2.POI Identification via LLM
• LLMs (e.g., GPT-4o) analyze semantic grid map descriptions
•Output: Task-relevant POIs (hazard zones, equipment areas, cold storage)

3.Path Optimization with LLM-A*
• LLM suggests intermediate waypoints
•A* operates on reduced space → lower operations & memory

4.Optimal Traversal via TSP Solver
•OR-Tools used
•Hybrid heuristics: Cheap Arc + Constraint Refinement
•Ensures visit-once + return-to-start constraints

Introduction

Note: In this research, we assume the perception data is given.

Scenario Obstacle Density Path Length ↑ Ops ↓ Memory ↓

Outdoor (Complex) 50% 13.6% 41.1% 36.9%

Outdoor (Simple) 30% 23.9% 34.2% 34.0%

Indoor (Warehouse) 30% 18.7% 41.8% 30.6%

We evaluate LLM-PCPP in three scenarios:
• Complex Outdoor Construction Site
• Simple Outdoor Construction Site
• Virtual Indoor Warehouse
Each environment is converted into a semantic grid map. POIs are 
generated by LLMs, and paths between POIs are planned using LLM-A* 
followed by TSP optimization.
Key metrics evaluated:
• Path Length: Reflects coverage richness
• Operations: Measures computational steps
• Storage: Indicates memory usage

Methodology

Experiment
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Note: Please refer to our paper for the 
indoor (Warehouse) path planning results

Table: Comparison of Experimental Results between LLM A* and A*
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