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Continuous-Time vs. Discrete-Time Vision-based
SLAM: A Comparative Study

Giovanni Cioffi, Titus Cieslewski, and Davide Scaramuzza

Abstract—Robotic practitioners generally approach the vision-
based SLAM problem through discrete-time formulations. This
has the advantage of a consolidated theory and very good
understanding of success and failure cases. However, discrete-
time SLAM needs tailored algorithms and simplifying assump-
tions when high-rate and/or asynchronous measurements, coming
from different sensors, are present in the estimation process.
Conversely, continuous-time SLAM does not suffer from these
limitations. Indeed, it allows integrating new sensor data asyn-
chronously without adding a new optimization variable for each
new measurement. In this way, the integration of asynchronous
or continuous high-rate streams of sensor data does not require
tailored and highly-engineered algorithms, enabling the fusion of
multiple sensor modalities in an intuitive fashion. On the down
side, continuous time introduces a prior that could worsen the
trajectory estimates in some unfavorable situations. In this work,
we aim at systematically comparing the advantages and limita-
tions of the two formulations in vision-based SLAM. To do so, we
perform an extensive experimental analysis, varying robot type,
speed of motion, and sensor modalities. Our experimental analy-
sis suggests that, independently of the trajectory type, continuous-
time SLAM is superior to its discrete counterpart whenever the
sensors are not time-synchronized. We release the code open-
source: https://github.com/uzh-rpg/rpg vision-based slam

I. INTRODUCTION AND RELATED WORK

Simultaneous localization and mapping (SLAM) is the prob-
lem of building a map of the environment and concurrently es-
timating the state of the robot. Among the plethora of sensors
providing relevant information for localization and mapping,
cameras are a very convenient solution in virtue of their
information-rich measurements, low cost, and low weight. The
most common vision-based SLAM formulation is based on the
discrete-time (DT) trajectory representation [1]. The discrete-
time formulation has the benefit of a very consolidated theory
and many successful applications have been seen in the past
years [1].

Although cameras can be used as the only source of infor-
mation in SLAM systems, fusing multiple sensor modalities is
beneficial for accuracy and robustness. In discrete-time SLAM,
customized algorithms are necessary to include asynchronous
measurements coming from different sources in the estimation
process [2]. Similarly, ad-hoc solutions are needed to avoid
adding a new state to the estimation problem every time a
new measurement is available [3].
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(a) In discrete-time SLAM methods, the state is represented discretely
at the measurement times of one of the sensors, e.g., the camera in
vision-based SLAM. Techniques such as interpolation are need to
include data from other sensors in the SLAM formulation.

(b) In continuous-time SLAM, the estimated state is instead expressed
using a continuous function, s(t). Now, for any measurement at a
time ti, a meaningful error term can be expressed by comparing the
measurement to the spline sample s(ti), or any of its derivatives
s′(ti), s

′′(ti), ..., e.g., no integration needed for IMU measurements.

(c) Furthermore, a continuous-time representation allows the simul-
taneous estimation of time offset between sensors. To this end, the
error terms of one of the sensors is simply expressed with s sampled
at its measurement times plus a constant time offset shared among
all measurements, s(ti + ∆t). Then, ∆t can be co-optimized with
the parameters of s.

Fig. 1: Benefits of using a continuous-time state representation
illustrated on a simple example where a variable x(t) is
estimated from two noisy sensors that measure x at different
frequencies (red dots and blue diamonds).

In the past years, researchers have been investigating the
use of continuous-time (CT) representations to encode the
camera trajectory [4], [5]. The continuous-time formulation
brings several advantages to the estimation problem. Firstly,
continuous-time trajectories can be sampled at any time. This
makes it easy to fuse asynchronous sensors and estimate
time offsets. Secondly, the continuous-time formulation re-
moves the need to include an optimization variable for every
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sensor measurement. The computational complexity of the
optimization problem is kept bounded, allowing to easily
include high-rate sensors, such as inertial measurement units
(IMU), in the estimation process. However, the continuous-
time representation introduces a prior on the smoothness of
the trajectory. Modeling this prior such that it can generalize
to different levels of the trajectory smoothness is not an easy
task.

To the best of our knowledge, there is no systematic
comparison between the continuous- and discrete-time formu-
lations for vision-based SLAM. Such systematic analysis is
fundamental to guide the robotic practitioners in the design of
future SLAM solutions. Therefore, we perform an extensive
quantitative analysis to understand the respective advantages
and limitations of the two trajectory representations. We focus
on batch SLAM with visual, inertial, and global positional
(i.e., Global Positioning System (GPS)) measurements. We run
experiments in both hardware-in-the-loop simulation and on
real-world trajectories of flying robots.

Our experiments indicate that discrete-time and continuous-
time representations produce equivalent results when the
sensors are time-synchronized. However, when there is an
offset in the time synchronization, continuous-time is superior.
The main reason behind this result is that the simplifying
assumptions made for estimating the time offsets in discrete
time do not always hold.

II. METHODOLOGY

We solve the estimation problem using a multi-step ap-
proach that involves a few initialization steps before the full-
batch optimization.

We denote with W the fixed world frame, whose z axis is
aligned with the gravity. B is the moving body frame. We set it
equal to the IMU frame. C is the camera frame. P is the GPS
antenna position. The position, orientation, and velocity of B
with respect to W at time tk are written as pw

bk
∈ R3, Rw

bk
∈

R3×3 part of the 3-D rotation group SO(3), and vw
bk

∈ R3,
respectively. We use 4×4 matrices, T ∈ SE(3) (the special
Euclidean group) to express 6-DOF Euclidean transformations.
The time tci is the time offset between camera and IMU such
that timu = tcam + tci . Using the same convention, tgi is the
GPS-IMU time offset.

The initial camera poses and 3-D landmarks are obtained
by using COLMAP [6] and are expressed in the scaleless
reference frame G.

A. Continuous-time representation

We use two B-splines to represent the position, p(u) ∈ R3,
and orientation, R(u) ∈ SO(3), of the trajectory, where u is
the uniform time representation proposed in [7].

1) Initialization: The first step of our continuous-time tra-
jectory estimation pipeline is to fit a B-spline to the K camera
poses estimated by COLMAP obtaining the continuous-time
trajectory cT g

c = {pg
ci , R

g
ci}.. We then transform the camera

poses in body poses: cT g
b = {pg

bi
, Rg

bi
}.

The second step of our continuous-time trajectory estima-
tion pipeline is to estimate the actual scale of the trajectory
cT g

b as well as to find a transformation that aligns it to the

gravity aligned frame. When GPS measurements are available,
we obtain an initial estimation of the 6-DOF transformation
Tw

g and scale s using the method proposed in [8]. Then, Tw
g , s,

pb
p, and tgi , are estimated by minimizing the difference between

the GPS measurements, p̄w
pj

, and the predicted GPS antenna
positions sampled from the spline.

In the case when we do not use GPS measurements, we
integrate the IMU measurements for a short period of time,
usually few seconds, to obtain a small trajectory segment. This
trajectory is expressed in a gravity aligned frame, I , which
is estimated from the accelerometer measurements collected
when the IMU is static. Similarly as before, we use [8] to
obtain the transformation s,Ti

g . This transformation is applied
to transform cT g

b to the frame I .
2) Full-batch optimization: We use Tw

g and s estimated
in the initialization step to transform the trajectory cT g

b

to the global frame W (or I in the case when GPS is
not used): cT w

b = {pw
bi
,Rw

bi
}. Similarly, the 3-D land-

marks pg
lr

are also transformed to W : pw
lr

= sRw
g p

g
lr

+
pw
g . In the full-batch optimization, the state vector cX =

{cT w
b ,L, tci ,Tc

i , t
g
i ,p

b
p,g

w,c B}, is estimated by minimizing
the cost function

min
cX

K∑
k=1

∑
r∈Rk

∥∥ev
k,r

∥∥2
Wv

+

M∑
m=1

(∥ea
m∥2Wa

+ ∥eωm∥2Ww
)+

D∑
d=1

∥∥egps
d

∥∥2
Wgps

+

F∑
f=1

(
∥∥∥eba

f

∥∥∥2
Wba

+
∥∥∥ebω

f

∥∥∥2
Wbω

). (1)

The error ev
k,r is the visual residuals, which describes the re-

projection error of the landmark pw
lr

. The set Rk contains
all the landmarks that project to the frame k. The image
feature measurements z̄k,r are obtained from COLMAP. The
quantity ea

m is the m-th accelerometer residual. The quantity
eωm is the m-th gyroscope residual. We use cubic B-splines
to represent accelerometer and gyroscope biases, ba(u) and
bω(u) as in [4]. The errors eba

f and ebω
f are residuals on the

rate of the bias changes. The quantity egps
d is the d-th GPS

residual. The matrices W are the weights of the residuals.

B. Discrete-time representation

In the discrete-time formulation, the trajectory is repre-
sented by the body poses at the rate of the camera: dT w

b =
{pw

bk
,Rw

bk
}. The camera-IMU time offset is estimated using

the method proposed in [2]. This method proposes to shift
the 2-D image features to account for the time offset between
camera and IMU measurements. It makes the assumption that
the camera motion has constant velocity in a short period of
time (e.g., between consecutive frames), and, based on this
assumption, it calculates the velocity of the 2-D features on
the image plane. This velocity is then used to shift the feature
position in the small period of time that corresponds to the
camera-IMU time delay (see Eq. (4) in [2]). To define the
GPS errors, the trajectory is interpolated at the time of the
GPS measurements. The IMU-GPS time offset is taken into
account in the interpolation factor similarly as in [9].
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1) Initialization: Similarly to Sec. II-A1, we compute the
body poses from the camera poses estimated by COLMAP and
then transform them to the world frame W using the 6-DOF
and scale transformation obtained by applying [8].

2) Full-batch optimization: Using a similar probabilistic
SLAM formulation as in Sec. II-A2, we derive the cost
function to minimize

min
dX

K∑
k=1

∑
r∈Rk

∥∥ev
k,r

∥∥2
Wv

+

K∑
k=1

∥∥ei
k

∥∥2
Wi

+

K∑
k=1

(
∥∥∥eba

k

∥∥∥2
Wba

+

∥∥∥ebω
k

∥∥∥2
Wbω

) +

D∑
d=1

∥∥egps
d

∥∥2
Wgps

, (2)

The state vector is dX = {dT w
b ,Vw

b ,L, tci ,Tc
i , t

g
i ,p

b
p,

d B}.
The set Vw

b contains the velocity vectors: vw
bk

. The set dB
contains the accelerometer and gyroscope bias vectors: bak and
bωk

. The initial 3-D landmarks positions in W are obtained
similarly as described in II-A2. The quantities ev

k,r and egps
d

are the the reprojection and GPS errors, respectively. The
quantities ei

k are the inertial residuals computed as proposed
in [3]. III. EXPERIMENTS

We compare the continuous- and discrete-time represen-
tations in terms of accuracy of the estimated trajectory and
time offsets. We use the metrics [10]: positional absolute
trajectory error (ATEP) [m], and rotational absolute trajectory
error (ATER) [deg].
A. Hardware-in-the-Loop Simulation: EuRoC Dataset

The EuRoC dataset [11] contains sequences recorded on-
board a hex-rotor flying robot equipped with a stereo cam-
era and an IMU. This dataset is well-known for accurate
ground-truth and hardware synchronizated sensors. We only
use the sequences labeled with V , which contain 6-DOF
ground-truth from a motion capture system. We simulate GPS
measurements by downsampling and corrupting the ground-
truth positions with zero-mean Gaussian noise. The rate of
the simulated GPS measurements is 10 Hz and the standard
deviation of the Gaussian noise is 0.1 m.

1) Ablation study on the B-spline: We conducted a study
to evaluate the effects of the order and frequency of the
control points of the B-spline on the trajectory and camera-
IMU time offset estimates. The initial value of the time offset
was set to 0 ms. The results of the ablation study on the
order of the B-spline are in Table I. A B-spline of order 6,
which results in a cubic polynomial encoding accelerations, is
needed to correctly estimate the camera-IMU time offset. This
conclusion agrees with the findings in [12]. An order higher
than 6 does not have any effect on the estimation results.

TABLE I: Ablation study on the order of the B-spline.

Order Ev.
metric

EuRoC sequence
V101 V102 V103 V201 V202 V203

4 ATEP [m] 0.024 0.014 0.011 0.011 0.011 0.024
ATER [deg] 5.5 2.1 2.3 0.6 0.8 1.0
tci [ms] 0.9 3.2 -1.4 10.8 1.0 2.2

5 ATEP [m] 0.024 0.014 0.011 0.011 0.010 0.019
ATER [deg] 5.5 2.2 2.3 0.9 0.7 0.8
tci [ms] 0.3 -5.8 2.0 -1.8 0.0 0.5

6 ATEP [m] 0.024 0.014 0.011 0.012 0.010 0.010
ATER [deg] 5.5 2.1 2.3 0.8 0.7 0.6
tci [ms] 0.2 1.3 -1.4 1.2 0.0 0.2

TABLE II: Study on the freq. of the B-spline control nodes.

Node
freq.

Ev.
metric

EuRoC sequence
V101 V102 V103 V201 V202 V203

5 Hz ATEP [m] 0.023 0.014 0.011 0.010 0.010 0.019
ATER [deg] 5.6 2.1 2.3 0.9 0.8 0.8
tci [ms] -1.9 -2.8 1.7 4.0 2.6 -1.5

10 Hz ATEP [m] 0.024 0.014 0.011 0.012 0.010 0.010
ATER [deg] 5.5 2.1 2.3 0.8 0.7 0.6
tci [ms] 0.2 1.3 -1.4 1.2 0.0 0.2

20 Hz ATEP [m] 0.025 0.014 0.011 0.010 0.010 0.010
ATER [deg] 5.5 2.1 2.2 1.2 0.7 0.6
tci [ms] -2.4 0.7 -0.9 -0.7 -1.1 2.0

100 Hz ATEP [m] 0.024 0.226 0.117 0.060 0.168 0.136
ATER [deg] 8.8 8.4 12.1 6.6 11.1 5.6
tci [ms] 0.0 -4.1 -3.0 0.0 -1.3 -0.5

We set the order of the spline to 6 and performed an ablation
study on the control node frequency. The results are in Table II.
The values of ATE and tci suggest that a frequency of 10 Hz
is the optimal choice. We conclude that order 6 and control
nodes frequency 10/20 Hz are appropriate parameters for B-
spline representing trajectories in this dataset.

2) Evaluation of the trajectory representation: In this set
of experiments, we evaluated the continuous- and discrete-
time trajectory representations in terms of ATEP, ATER and
accuracy in estimating the camera-IMU time offset. Following
the findings of Sec. III-A1, we used B-spline of order 6 and
control node frequency of 10 Hz. To evaluate the accuracy in
estimating the camera-IMU time offset, we simulated delays
in the camera data stream, similarly to [2]. We ran experiments
with delays of 0, 10, and 20 ms. The results of this comparison
are in Table III. These results suggest that when the camera
and IMU are time-synchronized both trajectory representations
produce similar accuracy.

When the camera and IMU are not time-synchronized,
continuous time is the best trajectory representation. This
representation can properly estimate the time offset and pro-
duces ATE similar to the case of time-synchronized sensors. In
particular, the discrete-time representation suffers in estimating
the camera-IMU time offset in fast trajectories. The reason for
this result is the assumption of camera motion with constant
velocity in the period of time between consecutive camera
frames, which is needed to compute the camera-IMU time
offset. For agile motion, this assumption is no longer accurate.

B. Actual GPS with an outdoor flying robot

This dataset, courtesy of [13], contains outdoor flights of
a flying robot equipped with a time-synchronized VI sensor,
and a GPS receiver. The ground-truth position is provided
by a Leica total station. Fig. 2 shows the first trajectory of
the dataset. The ATEP and the time offset estimates are in
Table IV. For the continuous-time case, we used B-splines of
order 6 and control node frequency of 10 Hz as suggested by
the results in Sec. III-A. These results confirm the findings
of Sec. III-A: when the sensor are time-synchronized the two
trajectory representations produce similar results, as shown by
the similar values of ATEP and camera-IMU time offset.

C. Outdoor Trajectory: Ground robot

This experiment contains an evaluation of a ground robot
trajectory. The robot is equipped with a time-synchronized
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TABLE III: Comparison of the CT and DT approaches on the EuRoC dataset. ATEP in [m], ATER in [deg], t̂ci (ground-truth)
and tci (estimated) time offset are in [mm].

Seq. Continuous-time Discrete-time
t̂ci = 0 [ms] t̂ci = 10 [ms] t̂ci = 20 [ms] t̂ci = 0 [ms] t̂ci = 10 [ms] t̂ci = 20 [ms]

ATEP / ATER tci ATEP / ATER tci ATEP / ATER tci ATEP / ATER tci ATEP / ATER tci ATEP / ATER tci
V101 0.024 / 5.5 0.2 0.024 / 5.5 11.0 0.024 / 5.5 22.2 0.016 / 5.6 0.3 0.016 / 5.6 9.1 0.016 / 5.6 18.6
V102 0.014 / 2.1 1.3 0.014 / 2.1 9.7 0.014 / 2.1 20.6 0.024 / 2.4 0.0 0.026 / 2.3 4.6 0.031 / 2.2 9.3
V103 0.011 / 2.3 -1.4 0.011 / 2.3 11.8 0.011 / 2.3 22.3 0.018 / 2.7 0.0 0.020 / 2.6 3.5 0.024 / 2.6 7.2
V201 0.012 / 0.8 1.2 0.010 / 0.9 9.7 0.010 / 0.9 19.0 0.009 / 1.0 0.3 0.010 / 1.0 8.1 0.012 / 1.0 16.4
V202 0.010 / 0.7 0.0 0.010 / 0.7 10.0 0.010 / 0.7 20.0 0.019 / 0.8 0.0 0.021 / 0.9 8.5 0.024 / 1.1 16.7
V203 0.010 / 0.6 0.2 0.010 / 0.6 10.6 0.010 / 0.6 21.5 0.033 / 1.1 0.0 0.036 / 1.2 4.0 0.040 / 1.3 7.5

Fig. 2: XY -view of Seq. 1 in the flying robot dataset.

TABLE IV: Comparison of CT and DT approaches in the
outdoor flying robot dataset.

Err. metric Traj. repr. Seq. 1 Seq. 2

ATEP [m] CT 0.39 0.50
DT 0.60 0.86

tci [ms] CT 0.4 0.6
DT 0.4 0.4

tgi [ms] CT -87.0 -118.0
DT -81.0 -119.0

monocular camera, IMU and GPS 1. The 3-D position ground-
truth is provided by a RTK-GPS system. Fig. 3 shows the
traveled trajectory of the robot. Both approaches produce
similar ATEP as reported in Table V. The estimated time
offsets are similar for all the configurations listed in Table V.
In the continuous-time case, tci , and tgi are -1.5 ms, and -
26.0 ms, respectively. In the discrete-time case, they are -0.8
ms, and -36.3 ms. These results show that the findings of the
experiments with a flying robot also apply to the case of a
ground robot.

IV. CONCLUSIONS

The objective of this work is to compare continuous vs.
discrete vision-based SLAM formulations to guide practi-
tioners in the development of SLAM algorithms. We find
that when the camera and IMU are time-synchronized the
two representations produce similar results. When a delay is
present between the two measurement streams, the continuous-
time representation is able to recover an accurate estimate
of the time offset and consequently, produces lower ATE.
In contrast, the discrete-time formulation fails in estimating
the time offset, particularly when the robot moves fast, which
consequently leads to high values of the ATE. The main reason
of this result is that the assumption, which is necessary to
estimate the camera-IMU time offset, of constant velocity of

1https://www.fixposition.com/

Fig. 3: XY -view of the trajectory traveled by the ground robot.

TABLE V: Comparison of CT and DT approaches in the
outdoor ground robot dataset.

CT

Freq.
[Hz]

Order
5 6 7

10 0.93 0.92 0.93
20 1.01 0.95 0.99
100 0.80 0.89 0.78

DT 0.87

the camera motion in the period of time between consecutive
camera frames does not always hold.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. D. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Trans. Robot., vol. 32, no. 6, pp. 1309–1332, 2016.

[2] T. Qin and S. Shen, “Online temporal calibration for monocular visual-
inertial systems,” in IROS, 2018.

[3] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual-inertial odometry,” IEEE Trans.
Robot., vol. 33, no. 1, pp. 1–21, 2017.

[4] P. Furgale, T. D. Barfoot, and G. Sibley, “Continuous-time batch
estimation using temporal basis functions,” in ICRA, 2012.

[5] E. Mueggler, G. Gallego, H. Rebecq, and D. Scaramuzza, “Continuous-
time visual-inertial odometry for event cameras,” IEEE Trans. Robot.,
vol. 34, no. 6, pp. 1425–1440, Dec. 2018.

[6] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,”
in IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2016.

[7] C. Sommer, V. Usenko, D. Schubert, N. Demmel, and D. Cremers,
“Efficient derivative computation for cumulative b-splines on lie groups,”
in IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), 2020.

[8] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Trans. Pat. Anal. Mach. Intell., 1991.

[9] W. Lee, K. Eckenhoff, P. Geneva, and G. Huang, “Intermittent gps-aided
vio: Online initialization and calibration,” in ICRA, 2020.

[10] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in IROS, 2018.

[11] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,”
Int. J. Robot. Research, vol. 35, no. 10, pp. 1157–1163, 2015.

[12] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in IROS, 2013.

[13] J. Surber, L. Teixeira, and M. Chli, “Robust Visual-Inertial Localization
with Weak GPS Priors for Repetitive UAV Flights,” in ICRA, 2017.

https://www.fixposition.com/

	Introduction and Related Work
	Methodology
	Continuous-time representation
	Initialization
	Full-batch optimization

	Discrete-time representation
	Initialization
	Full-batch optimization


	Experiments
	Hardware-in-the-Loop Simulation: EuRoC Dataset
	Ablation study on the B-spline
	Evaluation of the trajectory representation

	Actual GPS with an outdoor flying robot
	Outdoor Trajectory: Ground robot

	Conclusions
	References

