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Abstract— Construction robots are increasingly recognized as 

a key solution to address labor shortages and stagnant 

productivity in the construction industry. However, their 

widespread adoption faces several critical challenges: (1) limited 

skill sets—while many skill transfer studies exist, there are 

limited studies focusing on tasks involving collision-free fragile 

material manipulation; (2) the absence of a generalizable 

simulation environment compatible with major robot learning 

algorithms, hindering future benchmarking efforts; and (3) the 

high data demands typically required for training, which place 

a heavy burden on human workers. To tackle these issues, this 

paper presents three main contributions: (1) a robot skill 

learning algorithm that incorporates collision force awareness 

for improved handling of fragile materials, (2) a simulation 

environment built using MuJoCo, designed to support a wide 

range of robot learning algorithms, and (3) a hierarchical 

learning framework that significantly reduces the amount of 

demonstration data needed. Experimental results demonstrate 

the effectiveness of the proposed hierarchical approach in 

enhancing robot skill learning performance. 

I. INTRODUCTION 

With severe labor shortages, the construction industry is in 
desperate need of alternative sources of labor [1]. Robots, with 
their high physical capabilities, are regarded as a promising 
solution [2][3]. However, the limited development of material 
manipulation skills in robots, combined with the extensive 
data requirements placed on human workers to instruct and 
demonstrate tasks, has significantly slowed the adoption of 
construction robotics [4][5]. This underscores the need for 
robot learning systems that are low in human workload, 
sample-efficient, and effective in skill abstraction and 
replication. 

On the other hand, many current robot skill learning 
models emphasize the potential for generalization across 
platforms and tasks [6]. While valuable from a research 
perspective, this emphasis often increases the amount of 
training data required compared to more targeted approaches, 
such as joint-state-based learning. From a practical standpoint, 
a typical construction company is more likely to adopt a single 
robot platform that offers optimal cost-performance and 
focuses on training it for the most urgent or repetitive task. 
With such considerations, methods that prioritize focused 
learning on a specific platform with minimal data overhead are 

more aligned with the realistic constraints of industry 
deployment. 

Additionally, fragile building materials such as glass panes 
and photovoltaic (PV) panels are ubiquitous in modern 
construction, yet current robotic learning approaches have 
barely addressed their manipulation [7]. Human workers still 
carry out most glass installation and PV panel placement tasks, 
which are both physically taxing and can lead to significant 
strain and risk of injury [8]. The study of replicating human’s 
skills and delegating such tasks to robots is crucial for 
occupational safety and health. When performing such tasks, 
human workers rely on the tactile input and senses of force to 
determine the actions during installations and protect the 
material from being damaged. For a robot to replicate such 
skill and take over the installation tasks, a learning model 
incorporating the tactile input is necessary. 

II. LITERATURE REVIEW 

As outlined in the Introduction section, several challenges 
remain before robots can effectively take over fragile material 
manipulation tasks. While some of these challenges are 
grounded in practical realities, many can be addressed through 
advances in engineering design and system-level coding 
innovations. There are several algorithms and models 
advancing temporal and behavioral abstraction efficiency, 
including but not limited to the options framework [9][10], 
latent skill models [11], and diffusion-based policies [12].  The 
most critical bottleneck, however, lies in developing sample-
efficient learning models capable of representing human 
manipulation skills. This section reviews recent progress in 
sample-efficient learning methods, which serve as the 
foundation for the proposed methodological framework.  

Hierarchical models have become a popular option due to 
the potential for learned skill reuse and strong suitability for 
easily readable temporal abstraction of skills [13]. For 
example, ROMAN was proposed to perform hierarchical 
behavior cloning from human demonstrations with several 
gating networks [13]. It was able to achieve skill replication 
with only three demonstrations. Moreover, CRISP was 
proposed as a Hierarchical Reinforcement Learning (HRL) 
algorithm to replicate the long horizon trajectory-based skills 
in simulated environments [14]. It largely reduced the 
demonstration data needs to 5-10 trajectories. However, even 
though both models demonstrated success in skill replication, 
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they did not consider multimodal input data, such as 
combining both trajectory and tactile input data. Therefore, in 
this paper, one of the research goals is to validate if adding 
force data and improving demonstration modality will help 
with HRL model training. 

III. METHODOLOGY 

This paper addresses key challenges in the adoption of 
construction robots and robot learning, namely the lack of 
suitable simulation environments, high demonstration 
workload, and low sample efficiency. To tackle these issues, 
we propose the following contributions: 

• Development of a collision force-aware simulation 
environment: We implemented a simulation 
environment in MuJoCo [15] that models the physical 
dynamics of the collision process, capturing forces 
between the panel and the track during installation 
tasks.  

• Design of a low-effort demonstration system: To 
reduce the demonstration workload and improve 
sample efficiency, we introduced a mouse-based 
teleoperation system. This method allows users to 
intuitively demonstrate joint motions, enhancing 
ergonomic usability and data efficiency for individual 
robots.  

• Implementation of HRL: To further enhance learning 
efficiency, we developed a hierarchical reinforcement 
learning framework that autonomously identifies 
subgoals and segments trajectories. Two Deep Q-
Networks (DQNs) are employed to learn policies for 
each trajectory segment. 

The technical details of these contributions are elaborated 
in the subsections below.  

A. Simulation Environment 

One common challenge faced by construction robotics 
researchers is the lack of publicly available robot simulation 
models that are directly compatible with the majority of robot 
learning models. Observing this challenge, the authors select 
MuJoCo as the base of the simulation environment. 
Construction task-related 3D models and robot models are 
added to the simulation environment. Gravity compensation 
was also enabled.  The physical properties of objects are also 
modified based on real-world settings. A screenshot of the 
system is shown in Fig. 1.  

The environment includes the installation object, target, a 
3D model of a robot, and physical properties that enable the 
simulation of collision effects (e.g. visual arrows scaled to the 
magnitude of the collision force). Currently, the simulation has 
been utilized for solar PV panel installation and DQN-based 
reinforcement learning. However, it is designed to be 
extensible, allowing for easy integration of additional tasks 
and learning models [15]. 

Figure 1.  The robot picked up a panel in MuJoCo. 

B. Demonstration System 

This paper provides a simulation environment that allows 
human workers to teleoperate the robot. The workload of 
demonstration is minimized to use the mouse to drag the joint 
state controller pane, as shown in Fig. 2. This is a more 
ergonomic approach compared to asking workers to perform 
the tasks repeatedly [5]. 

Figure 2.  Teleoperation with joint manipulation in the MuJoCo simulation 

environment. 

C. Hierarchical Reinforcement Learning Algorithm 

This study adopts the hierarchical structure of the learning 
algorithm to improve sample efficiency. As mentioned in the 
Literature Review section, HRL is a commonly used method 
to separately train a model that works better for a small 
segment of the data and thus improves the model learning 
efficiency. The HRL model proposed in this paper is shown in 
Fig. 3. The HRL model has two components: a subgoal 
classification network and the reinforcement learning parts. 
The subgoal classification network is a multi-layer perceptron 
(MLP) that performs supervised learning based on the input of 
state spaces (force data and joint space data). A total of 160 
trajectories were used to train this network. The DQN has three 
layers: linear, ReLU, and linear layer. The reward function was 
set to penalize the distance from the target and the collision 
force between the panel and the target track. 

Figure 3.  The proposed HRL architecture. 

 

 

 

 

 

     
        

              
       

     

     

     

      

             
       

            
       

      

     

      

      

         

         

      

 



  

The reward function is formulated as follows: 

 Stage 1 Pick-up: R1 = –1 ×  × D1 () 

 Stage 2 Installation: R2 = –1 ×   × D2 –  × F () 

Where R1 and R2 are the reward functions calculated at each 
step, D1 and D2 are the distances toward the subgoal/target at 
one specific stage, F is the collision force between the target 

track and the held object, and    are scaling coefficients. 
 After each installation phase, the reward will be reset. 

IV. EXPERIMENTAL VALIDATION AND TASK  

This paper presents a case study on solar panel installation, 
selected due to the panels’ substantial weight and the 
increasing need to delegate such labor-intensive tasks to 
robotic systems. The manipulated object, the solar panel, was 
modeled with carefully calibrated physical and material 
properties to ensure realistic simulation. In particular, 
parameters such as maximum allowable force and elasticity 
were derived based on the known characteristics of glass 
materials.  

To validate the proposed system, computational 
experimental evaluation was conducted. In the computational 
experiments, the evolution of the reward function was 
analyzed in relation to task progression. The authors further 
assessed the effectiveness of the hierarchical learning scheme 
by comparing model training performance with and without 
the hierarchical learning model.  

V. RESULTS 

The results of the model training are summarized as 
follows. Initially, the proposed system underwent standard 
training and testing procedures. As illustrated in Fig. 4, the 
reward function demonstrated a clear upward trend as the 
robot progressed toward the goal during the first stage. This 
observed increase in reward validates the effectiveness of the 
designed reward function in guiding the robot toward 
successful task completion. (Note: the authors manually reset 
the step at the end of each phase hence the sudden drop of the 
reward.) 

With the proposed reward functions validation, the authors 
adopted a metric to evaluate the model learning performance, 
meaning that a higher reward within the same training duration 
and with the same training effort will be regarded as a better 
algorithm. The authors compared the reward between DQN 
with and without the subgoal classification process. The 
results are shown in Table Ⅰ. The hierarchy DQN achieved a 
higher final step reward and average reward, demonstrating 
the promising performance. 

TABLE I.  COMPARISON OF MODEL TRAINING REWARDS 

Evaluation 

Metric 

Algorithm 

DQN Hierarchical DQN 

Final Step Reward -4.38 29.42 

Average Reward -13.55 -1.62 

Figure 4.  Reward change during installation and key robot states. 

VI. DISCUSSIONS AND CONCLUSIONS 

This paper is motivated by observing the slow adoption of 
construction robots in the construction industry. Several 
reasons were identified for the slow adoption, including the 
lack of robot skill learning models for construction, the data- 
intensive requirements of learning models that increase the 
demonstration workload of workers, and the lack of a 
benchmark simulation environment that connects construction 
tasks with advanced robot learning models. To address these 
challenges, this paper worked on the following technical 
advances:  

• Developed a robot simulation environment using 
MuJoCo that allows convenient deployment and 
application of advanced robot learning models. 

• Added force simulation to the MuJoCo environment 
to improve the sensory input modality and 
compatibility with construction tasks. 

• Designed a hierarchical robot learning model with 
HRL and adopted a teleoperation-based 
demonstration method to minimize the data collection 
workload and improved the ergonomics of the 
demonstration process. 

To validate the proposed system, computational and 
robotics experiments are performed. The authors compared the 
proposed hierarchical DQN with the traditional DQN method. 
The results demonstrated that the proposed hierarchical DQN 
can achieve a good training performance. 

Admittedly, this study has several limitations that present 
opportunities for future work. First, the current evaluation is 
limited to a single model architecture with the MLP-DQN 
structure. While this structure demonstrated promising results, 
the dataset (high-dimensional joint state data), algorithm, and 
its components (e.g., reward function design) require more 
comprehensive validation through benchmarking against 
alternative learning frameworks on larger, standardized 
datasets. Second, the simulation environment currently 
supports only a single task: solar panel installation. Although 
this scenario reflects a relevant and challenging construction 
application, it restricts the generalizability of the approach. 
Ongoing efforts are focused on expanding the simulation to 
include a broader set of construction tasks. This will enable 
more diverse training scenarios and facilitate the development 
of more versatile and robust robotic policies for real-world 
deployment.  
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