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Let the Robot Decide: Adaptive 

Scan Planning in cluttered and 

Unknown Terrains  
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Abstract— Autonomous 3D scanning in cluttered and 

unknown environments is essential for applications like 

construction monitoring and disaster response. This study 

presents a robotic framework that automates scan view planning 

and navigation for efficient point cloud data acquisition. By 

integrating SLAM, frontier-based exploration, and a scan view 

evaluation module, the system identifies optimal scanning 

locations while navigating unstructured terrain. The framework 

was implemented on a mobile robot equipped with LiDAR and 

RGB sensors and tested in a simulated disaster site. 

Experimental results demonstrated high-resolution mapping 

with minimal data loss, low registration error (RMSE: 2.66 cm), 

and robust navigation through complex terrain. This research 

significantly reduces human intervention and redundant 

scanning, enabling cost-effective, high-fidelity 3D modeling in 

dynamic, real-world scenarios. 

I.  INTRODUCTION 

Accurate 3D mapping is a critical capability for robots 
operating in dynamic and unstructured environments, such as 
construction sites, disaster zones, or post-industrial facilities. 
These settings are often cluttered, hazardous, and difficult for 
human surveyors to access, requiring robots to autonomously 
sense, plan, and navigate through unknown spaces. High-
resolution 3D models generated from LiDAR data are 
essential for enabling progress monitoring, structural 
assessment, rescue operations, and digital twin creation [1]. 

Traditional methods of acquiring such 3D models often 
rely on static terrestrial LiDAR scanning (TLS), which 
requires human operators to manually select scan locations 
and ensure adequate coverage. This approach is labor-
intensive and prone to occlusion errors due to the scanner's 
limited field of view. More critically, it is unsuitable for time-
sensitive or dangerous environments where human presence 
is not feasible. Autonomous robotic systems offer a promising 
alternative, but most existing solutions depend on pre-mapped 
environments or manual waypoint selection, limiting their 
adaptability in unknown or dynamic terrains. 

This paper presents a fully autonomous scan planning and 
navigation framework for mobile robots equipped with 3D 
LiDAR (Fig. 1). The proposed system addresses the challenge 
of occlusion by dynamically evaluating scan quality, terrain 
conditions, and spatial coverage to identify optimal scan 
paths. The core contributions include a visibility-aware scan 
evaluation method, a cost function that balances spatial and 
directional criteria, and seamless integration with a SLAM-
based localization and frontier exploration strategy. The robot 

 
P. Kim is with the Department of Autonomous Vehicle Engineering, 

Korea Aerospace University, Goyang, 10540 South Korea (e-mail: 
pkim@kau.ac.kr)  

S. Kim, and Y. K. Cho are with the Department of Civil and 

Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 

incrementally builds high-resolution point clouds while 
navigating unknown environments in real time. 

 

II. RELATED WORK 

A. Mobile Scanning Platform 

Autonomous mobile scanning systems have evolved 
significantly over the past two decades. Early efforts, such as 
Ariadne [2] and the 3D rangefinder platform by [3], focused 
on structured indoor spaces with limited autonomy and 
resolution. These systems often required prior maps or fixed 
scanning trajectories. Later platforms like PR2 [4], Irma3D 
[5], and MoPAD [6] introduced multi-modal sensors—
including RGB-D cameras, 3D LiDAR, and thermal 
imaging—to enrich environmental modeling and automate 
object recognition. The MoPAD system, for instance, 
emphasized multi-perspective fusion to reconstruct occluded 
interiors in cluttered rooms. 

More recently, robotic systems have tackled outdoor and 
industrial applications. [7] introduced a cooperative multi-
robot system for indoor-outdoor scanning using a parent-child 
framework. The quadruped-based system from [8] 
demonstrated autonomous scaffold mapping on construction 
sites, offering robust mobility and dense point cloud 
acquisition without prior maps. UAV-based platforms have 
also contributed to the field; [9] and [10] proposed real-time 
exploration strategies using stereo cameras and depth sensors, 
focusing on obstacle-rich or large-scale environments. 
Despite these advances, many approaches still rely on partial 
prior knowledge or require operator intervention during 
mission setup, limiting their generalizability. 
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Figure 1. Top-down view showing optimized scan location and robot 

trajectory during field experiments at a simulated disaster site. 

Trajectory color indicates scan quality based on visibility fitness: 

red= good, green= acceptable, black= poor 
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B. Next-Best-View (NBV) Planning 

The Next-Best-View (NBV) problem is central to active 
3D perception, aiming to select the most informative next 
viewpoint to improve scene coverage while minimizing 
redundancy. Classical NBV approaches, such as frontier-
based exploration [11], identify the boundary between known 
and unknown space using 2D occupancy grids. While 
computationally efficient, these methods often struggle in 
cluttered 3D environments where occlusions and complex 
geometries obscure critical features.  

More advanced NBV strategies incorporate volumetric 
representations—e.g., voxel maps [12], octrees [13], or 
probabilistic fields [14]—to quantify information gain and 
occlusion likelihood. Hybrid 2D–3D planners, like those 
proposed by [5], transition between coarse global plans and 
fine-grained local adjustments based on visibility constraints. 
Aerial platforms often apply sampling-based receding 
horizon methods [9] or semantic-aware NBV planning  [15] 
for structural inspection tasks. 

However, many of these methods are computationally 
expensive and assume structured environments or uniform 
terrain. The approach proposed in this paper avoids such 
limitations by using a lightweight, geometry-driven visibility 
scoring metric based on real-time LiDAR data. It integrates 
seamlessly with SLAM and frontier exploration to offer 
adaptive viewpoint selection that is robust to environmental 
complexity and sensor limitations. 

This paper contributes a lightweight, geometry-driven 
NBV approach tailored for ground robots in cluttered 
environments. 

 

III. METHODOLOGY 

The proposed framework consists of five core modules: 
(1) SLAM-based localization, (2) frontier-based navigation, 
(3) scan view evaluation, (4) stationary scanning, and (5) 
point cloud registration. These modules are integrated into a 
unified system enabling a mobile robot to autonomously 
explore and map cluttered, unstructured environments. 

A. System Overview 

The process begins with the robot receiving a user-defined 
boundary of the target scan region. The robot uses the LeGO-
LOAM SLAM algorithm to perform localization and 
construct an evolving map of its surroundings. Fig. 2 presents 
the complete system architecture, from environmental 
perception to 3D scan registration. 

B. Scan View Evaluation 

During navigation, the robot evaluates candidate scan 
positions in real time using a fitness score based on visibility. 
The robot dynamically computes heading angles and 
distances to prioritize scan targets with optimal visibility and 
spatial distribution, enhancing coverage and navigation 
efficiency.  

Each potential scan point (x, y) along the robot’s 
trajectory is evaluated using a visibility-based fitness score 
R(x, y), which reflects the quality of the viewpoint based on 
occlusion and line-of-sight. The score is computed by 

summing the radial distances measured by the 3D LiDAR at 
that location across a range of beam angles: 

𝑅(𝑥, 𝑦) ≈ ∑ ∑ 𝑑(𝑥, 𝑦, 𝜃, ∅)

∅ 𝑚𝑎𝑥

∅=∅𝑚𝑖𝑛

𝜃𝑚𝑎𝑥

𝜃=𝜃𝑚𝑖𝑛

  

 
Higher scores indicate less occlusion and better spatial 

visibility. As shown in Fig. 3, these scores are visualized on a 
color map, where trajectory segments are classified as 
“good,” “acceptable,” or “bad” scan locations based on their 
fitness values. 

 

C. Goal Selection and Cost Function 

To avoid repetitive or suboptimal scanning, the system 
incorporates a cost function that combines spatial and 
directional criteria to balance efficient navigation with high 
data quality. These criteria include: 

● Distance from current robot position 

● Deviation in heading from prior scans 

● Penalty for proximity to previous scans 

● Inverse of scan visibility score 

D. Autonomous Navigation 

The optimal scan goal is transmitted to the ROS 
move_base stack, which handles global/local path planning 
and real-time obstacle avoidance. As the robot travels, it 
updates its map and reevaluates scan fitness. Once it reaches 

 
 

Figure 2. Flowchart of the proposed architecture 
 



 

 

the scan position, the robot performs a high-resolution 
stationary scan and proceeds to the next goal. 

 

IV. EXPERIMENTAL VALIDATION 

To validate the proposed framework, a series of field 

experiments were conducted at a full-scale outdoor disaster 

training site, approximately 90 m × 90 m in size. The testbed 

was designed to simulate post-disaster environments, 

featuring collapsed concrete structures, scattered debris, 

irregular terrain, and enclosed spaces. These conditions 

presented realistic challenges for autonomous navigation and 

3D data acquisition. 

A custom-built mobile robot, the Ground Robot for 

Mapping Infrastructure (GRoMI), was used as the 

experimental platform (Fig. 4). It was equipped with a 

rotating 3D LiDAR for environmental sensing, multiple 2D 

LiDARs for obstacle detection, and a panoramic RGB camera 

for visual mapping. The onboard computation system 

executed the full autonomous scanning framework, including 

SLAM, scan view evaluation, path planning, and point cloud 

registration. No prior maps or manual interventions were used 

throughout the mission. 

A. Experiment Setup and Workflow 

The scanning mission began with dynamic exploration, 

during which the robot performed SLAM-based localization 

while collecting point cloud data on-the-fly. This initial phase 

allowed the robot to identify obstacles, update its map, and 

evaluate the visibility and fitness of potential scan viewpoints. 

The robot then proceeded through the site, adaptively 

selecting high-visibility scan regions based on the proposed 

cost function and visibility scoring method. 

B. Comparison with Conventional Stationary Scanning 

To highlight the benefit of optimized stationary scanning, 

a comparison was conducted between point clouds collected 

during dynamic motion and those acquired at stationary scan 

locations. In the dynamic mode, the robot performed 

continuous scanning while navigating, producing coarse point 

clouds used primarily for localization and navigation support. 

In contrast, stationary scans were taken at viewpoints selected 

based on visibility evaluation to maximize scene coverage 

and reduce occlusions. 

As shown in Fig. 5(a) and 5(b), dynamic scans exhibited 

sparser and noisier geometry, with reduced resolution and 

increased occlusion artifacts. Meanwhile, stationary scans 

provided higher point density, clearer object boundaries, and 

more complete surface reconstruction. These results confirm 

that while dynamic scanning supports autonomous 

exploration, high-fidelity 3D reconstruction is best achieved 

through stationary scans taken at optimally selected positions. 

 
Figure 4. Field deployment of the GRoMI 

  

 
(a) Resulting stationary scan 

 
(b) Resulting dynamic scan 

Figure 5. Data quality comparison in the same region 

 
 

Figure 3. Evaluation of fitness score for scan positions along the 

robot trajectory 



 

 

C. Accuracy of Registration. 

The accuracy of multi-view registration was evaluated 

using Root Mean Square Error (RMSE) between overlapping 

point clouds and angular deviation of alignment. Pose 

estimates provided by the SLAM module were used to 

register each scan frame. Across all registered scans, the 

framework achieved an average RMSE of 2.66 cm and 

angular deviation below 0.08°, confirming that the system 

maintained accurate localization and alignment throughout 

the mission, even in unstructured terrain. 

D. Autonomy and Coverage. 

The robot successfully explored and scanned the entire 

target region using frontier-based navigation and adaptive 

scan view planning. The framework dynamically adjusted to 

terrain conditions, avoided inaccessible areas, and selected 

scan locations without human oversight. Compared to 

stationary methods, the dynamic strategy reduced scanning 

time, eliminated redundant data acquisition, and maintained 

high spatial coverage without sacrificing quality. 

These field results confirm that the proposed framework 

can autonomously acquire high-fidelity 3D point clouds in 

unknown, cluttered, and hazardous environments. The 

dynamic scanning method, combined with visibility-aware 

planning and robust localization, offers a scalable solution for 

real-world construction monitoring, post-disaster assessment, 

and autonomous mapping applications. 

V. DISCUSSION  

The proposed scan planning framework demonstrates 

strong performance in unstructured environments by 

combining visibility-aware viewpoint selection with SLAM-

based localization and frontier exploration. The use of a real-

time fitness score based on 3D LiDAR data enables the robot 

to prioritize scan locations that maximize visibility and reduce 

redundancy, improving both coverage and efficiency. 

Experimental comparisons highlight that while dynamic 

scans support fast navigation and coarse mapping, they 

produce sparse and noisier data. In contrast, stationary scans 

at optimized locations yield denser, higher-quality point 

clouds suitable for detailed reconstruction. This trade-off 

confirms the importance of strategic scan goal planning for 

applications requiring accurate 3D data. 

A current limitation is the exclusive reliance on geometric 

visibility for scan evaluation. Environments with minimal 

structural features may challenge the scoring method. 

Additionally, terrain accessibility is handled through LiDAR-

based occupancy but could benefit from incorporating surface 

properties for better path planning. 

VI. CONCLUSION 

Field experiments demonstrated that the proposed 

framework reliably generates high-quality 3D point clouds in 

unknown, cluttered environments. By selecting scan locations 

based on visibility and spatial efficiency, the system achieved 

accurate registration (RMSE 2.66 cm, angular deviation 

<0.08°) without manual intervention. Stationary scans clearly 

outperformed dynamic ones in data quality. Future work will 

explore terrain-aware planning and multi-robot deployment to 

improve scalability and adaptability. 
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