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• 44 % of U.S. homes built before 1970 suffer from poor insulation 
and energy loss.

• LiDAR surveys are precise but cost-prohibitive; typical drones 
carry low-resolution thermal sensors.

• We present an affordable drone workflow that merges infrared 
and high-resolution RGB images with Structure from Motion to 
produce dense three-dimensional thermal maps.

Ⅰ. Data Collection and Processing

Structure-from-Motion (SfM) in Civil Engineering
• SfM reconstructs 3D models from 2D images by estimating camera 

pose and geometry [1].
• It’s a cost-effective alternative to LiDAR for structural modeling [2].
• Tools like COLMAP have made SfM scalable and robust for large 

datasets [1], [3].
UAVs for Infrastructure Inspection
• UAVs combined with SfM are widely used for buildings, bridges, 

and topographic mapping [2], [4].
• Allow efficient, multi-angle data collection in hard-to-reach areas 

[5].
• Effective in construction, tunnel, and highway inspections [6], [7].
Limitations of RGB-Only Models
• RGB images capture visual detail but lack thermal data, missing 

defects like heat loss or poor insulation [8].
• Dense point clouds from RGB alone do not support energy 

diagnostics.
Thermal Imaging: Value and Challenges
• Thermal sensors detect surface temperature variations for 

identifying leaks and insulation flaws [9], [10].
• However, thermal imagery is typically low-res and prone to 

distortion, limiting its 3D usability [11].
Fusing RGB and Thermal Data
• Fusion enhances 3D models with both spatial detail and functional 

thermal data [12].
• Earlier methods were limited to sparse fusion and lacked 

resolution [11], [12].
• Recent advances embed thermal values into dense point clouds 

using techniques like KNN [11], [13].
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3. OBJECTIVES

• The method was tested on a desktop with an Intel i9 CPU and NVIDIA RTX 
4090 GPU, ensuring fast and efficient processing.

• Sparse reconstruction produced ~107,000 points in ~15 minutes, capturing 
the building’s base geometry.

• Dense reconstruction generated ~10 million points in ~30 minutes, offering 
high-resolution spatial detail suitable for inspection.

• Thermal values were accurately interpolated from sparse to dense points 
using KNN.

• Blending analysis with alpha values (𝛼𝛼 = 0.25, 0.5, 0.75, 1.0) showed:
   𝛼𝛼 = 0.5–0.75 provided the best visual balance.
• Final outputs preserved both geometric structure and thermal information, 

supporting manual review and future AI-based anomaly detection.

• Location: Trinity Hall, UTA
• Drone: Parrot Anafi USA with 4K + FLIR Boson® IR
• 417 images captured at 10'', 20, 30' elevations
• RGB and thermal channels separated from blended images

• Tool: COLMAP (SfM + SIFT)
• Sparse 3D points from RGB feature matches
• Sequential matching used for efficient registration

Ⅲ. Thermal Sparse Mapping

• Back-project sparse RGB points to original images
• Map to corresponding thermal pixels
• Convert thermal RGB values to temperature index
• Filter using IQR-based outlier detection
• Final thermal value = median of inlier pixel values

Ⅳ. Dense Reconstruction

• A dense RGB point cloud was generated using Multi-View Stereo 
(MVS) in COLMAP.

• This provided high-resolution geometry but lacked thermal 
information.

Thermal Value Interpolation using KNN
• For each dense point 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ​, K-Nearest Neighbors (K = 3) was used to 

find nearby sparse points with known thermal values.
• The thermal value was computed as the average of these neighbors:
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 RGB–Thermal Blending
• RGB and thermal data were blended for visualization using:

𝑝𝑝 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝛼𝛼 ⋅ 𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 1 −  𝛼𝛼 ⋅ 𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

I. Fuse drone-captured low-resolution thermal data with high-
resolution RGB imagery to generate a dense, thermally enhanced 
3D point cloud

II. Leverage drone-based sensing for automated, contactless 
thermal assessment of building envelopes

III. Develop a scalable, low-cost inspection pipeline using open-
source SfM tools

IV. Enable future integration with deep learning for robotic thermal 
anomaly detection in built environments
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• Demonstrated a drone-driven workflow for creating high-resolution 3D 
thermal models of buildings based on our recent work [14].

• Achieved effective fusion of thermal and RGB drone imagery using an 
open-source SfM pipeline (COLMAP)

• Produced dense point clouds with embedded temperature values, enabling 
detailed thermal profiling

• Validated that the method can highlight thermal anomalies such as heat 
loss and insulation defects

Future Work:
The next phase involves integrating this pipeline with deep learning 
frameworks for thermal defect detection and scaling it toward autonomous, 
drone-based building inspection systems in construction and facility 
management. We also plan to evaluate model accuracy using ground-truth 
thermal or LiDAR references and scale deployment to large infrastructure 
systems.
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