

1. INTRODUCTION

- 44 % of U.S. homes built before 1970 suffer from poor insulation and energy loss.
- LiDAR surveys are precise but cost-prohibitive; typical drones carry low-resolution thermal sensors.
- We present an affordable drone workflow that merges infrared and high-resolution RGB images with Structure from Motion to produce dense three-dimensional thermal maps.

2. BACKGROUND

Structure-from-Motion (SfM) in Civil Engineering

- SfM reconstructs 3D models from 2D images by estimating camera pose and geometry [1].
- It's a cost-effective alternative to LiDAR for structural modeling [2]. • Tools like COLMAP have made SfM scalable and robust for large datasets [1], [3].

UAVs for Infrastructure Inspection

- UAVs combined with SfM are widely used for buildings, bridges, and topographic mapping [2], [4].
- Allow efficient, multi-angle data collection in hard-to-reach areas
- Effective in construction, tunnel, and highway inspections [6], [7].

Limitations of RGB-Only Models

- RGB images capture visual detail but lack thermal data, missing defects like heat loss or poor insulation [8].
- Dense point clouds from RGB alone do not support energy diagnostics.

Thermal Imaging: Value and Challenges

- Thermal sensors detect surface temperature variations for identifying leaks and insulation flaws [9], [10].
- However, thermal imagery is typically low-res and prone to distortion, limiting its 3D usability [11].

Fusing RGB and Thermal Data

- Fusion enhances 3D models with both spatial detail and functional thermal data [12].
- Earlier methods were limited to sparse fusion and lacked resolution [11], [12].
- Recent advances embed thermal values into dense point clouds using techniques like KNN [11], [13].

3. OBJECTIVES

- Fuse drone-captured low-resolution thermal data with highresolution RGB imagery to generate a dense, thermally enhanced 3D point cloud
- II. Leverage drone-based sensing for automated, contactless thermal assessment of building envelopes
- III. Develop a scalable, low-cost inspection pipeline using opensource SfM tools
- IV. Enable future integration with deep learning for robotic thermal anomaly detection in built environments

REFERENCE

[1] Schönberger et al. (2016). "Structure-from-Motion Revisited." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2] Meza et al. (2018). "A structure-from-motion pipeline for topographic reconstructions using unmanned aerial vehicles and open source software." Communications in Computer and Information Science.

[3] Schönberger et al. (2016). "Pixelwise view selection for unstructured multi-view stereo." Lecture Notes in Computer Science. [4] Tan et al. (2021). "Automatic inspection data collection of building surface based on BIM and UAV." Automation in Construction, 131, 103881.

[5] Yajima et al. (2021). "AI-Driven 3D Point Cloud-Based Highway Infrastructure Monitoring System Using UAV." Computing in Civil Engineering 2021, 489–496.

[6] Chaiyasarn et al. (2016). "Distortion-Free Image Mosaicing for Tunnel Inspection Based on Robust Cylindrical Surface Estimation through Structure from Motion." Journal of Computing in Civil Engineering, 30(3).

4. METHODOLOGY

Reconstructing 3D Thermal Profiles of Buildings using Multimodal Drone Data

Sanjay Acharjee, S.M. IEEE¹, Abir Khan Ratul, S.M. IEEE¹, Ashrant Aryal, Ph.D.², Md Nazmus Sakib, Ph.D., M.IEEE¹

¹Intelligent Systems and Emerging Technologies (iSET) Lab, University of Texas at Arlington, Arlington, Texas ²Human-centered Intelligent Built Environments (HIBE) Lab, Texas A&M University, College Station, Texas

> [7] Özaslan et al. (2017). "Autonomous navigation and mapping for inspection of penstocks and tunnels with MAVs." IEEE Robotics and Automation Letters, 2(3). [8] Khaloo, A., and Lattanzi, D. (2017). "Hierarchical Dense SfM Reconstructions for Infrastructure Condition Assessment." Journal

> of Computing in Civil Engineering, 31(1). [9] Garrido et al. (2020). "Thermographic methodologies for infrastructure inspection: A review." Applied Energy. [10] Lin et al. (2019). "Fusion of thermal imagery with point clouds for façade thermal attribute mapping." ISPRS Journal, 151. [11] Hou et al. (2021). "Fusing tie points' RGB and thermal information for mapping large areas." Automation in Construction, 124. [12] Ramón et al. (2022). "Thermal point clouds of buildings: A review." Energy and Buildings. [13] Hou et al. (2022). "Performance of RGB and thermal data fusion for 3D thermal maps." Journal of Building Engineering, 45. [14] Acharjee et al. (2025). "SfM Meets Thermal: Reconstructing 3D Thermal Profiles of Buildings using Multimodal Drone Data." Computing in Civil Engineering 2025.

$$-(1 \sum_{i=1}^{3} -(1 \sum_{i=1}^{3})$$

$$T(p_{dense}) = \frac{1}{3} \sum_{i=1}^{1} T(p_{sparse(i)})$$

- using KNN.

6. CONCLUSION

Future Work:

The next phase involves integrating this pipeline with deep learning frameworks for thermal defect detection and scaling it toward autonomous, drone-based building inspection systems in construction and facility management. We also plan to evaluate model accuracy using ground-truth thermal or LiDAR references and scale deployment to large infrastructure systems.

https://iset-lab.github.io

5. CASE STUDY AND RESULTS

α=0

α=.25

α=.5

α=.75

• The method was tested on a desktop with an Intel i9 CPU and NVIDIA RTX 4090 GPU, ensuring fast and efficient processing.

• Sparse reconstruction produced ~107,000 points in ~15 minutes, capturing the building's base geometry.

• Dense reconstruction generated ~10 million points in ~30 minutes, offering high-resolution spatial detail suitable for inspection.

• Thermal values were accurately interpolated from sparse to dense points

• Blending analysis with alpha values ($\alpha = 0.25, 0.5, 0.75, 1.0$) showed:

 α = 0.5–0.75 provided the best visual balance.

• Final outputs preserved both geometric structure and thermal information, supporting manual review and future AI-based anomaly detection.

• Demonstrated a drone-driven workflow for creating high-resolution 3D thermal models of buildings based on our recent work [14].

• Achieved effective fusion of thermal and RGB drone imagery using an open-source SfM pipeline (COLMAP)

• Produced dense point clouds with **embedded temperature values**, enabling detailed thermal profiling

• Validated that the method can highlight thermal anomalies such as heat loss and insulation defects

Sanjay Acharjee

Doctoral Student, Department of Civil Engineering Intelligent Systems and Emerging Technologies Lab University of Texas at Arlington, Arlington

Abir Khan Ratul

Doctoral Student, Department of Civil Engineering Intelligent Systems and Emerging Technologies Lab University of Texas at Arlington, Arlington

