
  

  

Abstract-- Robust dynamic object detection and tracking are 

essential for enabling robots to operate safely and effectively 

alongside humans in complex environments such as construction 

sites. While LiDAR-based SLAM and occupancy grid methods 

offer viable solutions for detecting and tracking motion, many 

state-of-the-art 3D vision approaches rely heavily on pre-trained 

neural networks and require additional post-processing to 

identify moving objects. Sensor fusion techniques, combining the 

precision of LiDAR with the semantic richness of RGB imagery, 

offer a promising alternative. In this work, we present a novel 

framework that enhances a quadruped robot equipped with a 

LiDAR sensor and an upward-facing fisheye camera for real-

time dynamic object detection and tracking. After identifying 

moving objects within a registered point cloud, our method 

assigns semantic labels by projecting 3D coordinates onto a 2D 

cylindrical panorama, aligning with real-time image-based 

detections for observation update of the Kalman filter. The 

proposed system demonstrates high precision, simplicity, and 

robustness, particularly in handling objects transitioning 

between dynamic and static states, thus it is well-suited for 

deployment in real-world construction environments. 

I. INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) has been 
widely adopted for legged robots equipped with onboard 
sensors to reconstruct both indoor [1] and outdoor [2] 
environments, particularly in response to the growing 
integration of robotic systems in construction tasks. However, 
dynamic objects are often treated as noise in the SLAM 
problem, leading most existing approaches to separate 
dynamic object tracking from map reconstruction [3]. Despite 
this, discrepancies between consecutive point cloud maps can 
offer critical insights into object motion relative to the sensor, 
presenting an opportunity to integrate perception and mapping 
more effectively. In prior work [4], we proposed an online 
dynamic object detection and tracking method based on 
LiDAR SLAM and occupancy grids. By assigning discrete 
states to grid cells and updating occupancy probabilities 
through discounted returns across state transitions, dynamic 
objects can be clustered. This information is then fed into a 
Kalman filter for tracking and motion state estimation, without 
requiring any additional sensing beyond the LiDAR. 

Nevertheless, two key challenges persist: (1) the inability 
to semantically identify detected moving objects, and (2) 
degraded tracking performance when objects transition from 
dynamic to temporarily static states. While incorporating a 
camera can address these issues by providing semantic 
context, existing deep learning-based 3D object detection 
approaches often demand complex models, substantial 
computational resources, extensive labeled datasets, and heavy  
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Figure 1. Frame System (top) and Point Projection and Mapping (bottom). 

dependence on accurate depth estimation [5], which can be 
error-prone. Conventional RGB cameras also suffer from 
limited fields of view, and using multiple cameras introduces 
further challenges in extrinsic and temporal calibration [6]. 
Additionally, distortion correction is required when using 
pinhole lens models. To address these limitations, we integrate 
a single upward-facing fisheye camera into our existing 
LiDAR-based system, enabling a unified and semantically rich 
perception framework.  

This research proposes a novel method for dynamic object 
detection and tracking by combining registered LiDAR point 
cloud maps from SLAM with cylindrical panoramic images 
derived from the fisheye camera (Fig. 1). The framework 
comprises two core modules: (1) a projection and labeling 
pipeline that maps 3D dynamic objects onto a 2D cylindrical 
panorama for semantic annotation, and (2) a dynamic object 
tracking mechanism based on occupancy grid updates and a 
modified Kalman filter. We validate our approach through 
experiments conducted on a quadruped robot operating in a 
real-world indoor construction setting. The primary 
contributions of this work are as follows: (a) the development 
of a generalizable LiDAR-camera fusion method for dynamic 
object detection and tracking to support robotic navigation, (b) 
enhanced detection and tracking accuracy through semantic 
augmentation via sensor fusion, and (c) successful deployment 
and validation of the proposed system in a real-world 
construction environment. 

II. RELATED WORK 

With the rise of autonomous systems, such as autonomous 
robots and on-road self-driving vehicles, sensor fusion is an 
essential technology that can lessen detection uncertainty and 
overcome individual sensors' drawbacks while working alone. 
For example, integrating LiDAR and the camera could provide 
semantically rich images along with accurate depth 
measurement and velocity estimation. Utilizing the detailed 
lane geometry provided by Argoverse's high-definition maps, 
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[7] expands 2D instance segmentations from image space into 
3D cuboids within LiDAR space, thereby mitigating 
ambiguities in object orientation. These self-annotated, 
inflated cuboids serve as effective training targets for 3D 
object detection models. In contrast, [8] project LiDAR point 
clouds onto the image plane and estimate object depth by 
averaging the calibrated LiDAR points that fall within the 2D 
bounding boxes. Furthermore, advancements in attention 
mechanisms have facilitated the integration of multiple 
transformer modules for cross-modal feature fusion. 
Leveraging this, [9] introduces a Multi-Modal Fusion 
Transformer that processes LiDAR bird’s-eye view (BEV) 
representations alongside single-view RGB images, enabling 
robust perception in complex urban driving environments.  

Unlike the former approaches that need tremendous 
labeled point cloud data, accurate calibration between a 
LiDAR sensor and camera, or extensive computation 
resources, our methods acquire and utilize the label from a 
YOLOv8 [10] detector in a bi-directional way. On the one 
hand, we only project detected dynamic object centers onto a 
cylindrical panorama view generated by a 360° fisheye camera 
set to face upward; thus, the horizontal angle θ, or azimuth, to 
the detected dynamic object following image transformation is 
unaffected by the camera distortion. On the other hand, the 
mapping process between detection results from the 2D 
images and the 3D point cloud could reduce both the false 
positive objects originating from the pretrained model in the 
image, as well as false negative temporary static objects 
caused by the loose tracking issue in the point cloud (Fig. 2). 

III. METHOD 

A.  LiDAR-Camera Fusion and Projection 

Following the identification of dynamic objects in the 
environment, semantic labels are assigned through sensor 
fusion between LiDAR and a camera system. A 360° fisheye 
camera mounted on the quadruped robot provides panoramic 
semantic information in a cylindrical projection view. As 
shown in Fig. 1, the centers of the detected dynamic objects 
are first transformed from the global map frame to the robot’s 
local coordinate frame using pose estimates obtained from the 
SLAM module, and subsequently to the camera coordinate 
frame. These 3D centers are then projected onto the cylindrical 
panoramic canvas to spatially align with 2D object labels 
detected in real time by the YOLOv8 detector. Leveraging its 
strong generalization capability, we implement a zero-shot 
YOLOv8 model to identify workers without requiring 
additional task-specific fine-tuning. 

  

Figure 2. False Positive Objects in the Image (left) and False Negative 
Temporary Static Objects in the Point Cloud (right). 

 

Figure 3. Workflow of the LiDAR-Camera Fusion Model 

Due to the upward-facing configuration of the fisheye 
camera, image distortion does not affect the horizontal angle θ 
after projection. This azimuth angle is used to match the 
projected center point of each dynamic object with the 
corresponding 2D bounding box. Once matched, the semantic 
label from the image is mapped back to the corresponding 3D 
object. The complete workflow of this fusion and projection 
process is illustrated in Fig. 3. 

B.  Dynamic Object Detection 

We proposed a dynamic object detection method in [4], 
integrating mapping and robot pose data from SLAM for the 
recognition of dynamic objects. Compared with previous 
occupancy grid-based methods, we made several 
improvements in the following aspects. First, instead of 
modeling the whole observing space or transition probability, 
we just update the state value function for the target grid as 
needed. Second, in addition to the free and occupied states, we 
define the extra unobserved and neighbor states to improve the 
responsiveness to dynamic changes on construction sites. 
Third, we incorporate memory weight and discounted reward 
to balance the immediate and long-term impacts of state 
transitions on state values. Finally, we are able to achieve 
online predictions by incrementally updating the occupancy 

probability rather than using a neural network. �̅�𝑡+1, �̅�𝑡, �̅�𝑡+1, 
𝛾 in formula (1) are normalized total return in frame 𝑡 + 1 and 
𝑡, normalized reward for state transition from frame 𝑡 to 𝑡 +
1, and discounted rate, respectively. 

 �̅�𝑡+1 = �̅�𝑡+1 + 𝛾 ∗ �̅�𝑡 (1) 

Fig. 4 illustrates the process of determining the states and 
the reward between state transitions. The order in which we 
identify the cell states in practice is unobserved, occupied, free, 
and neighbor. First, we make every cell on the global map 
unobserved. We then iterate through each point and set the 
relevant cells to be occupied. Then we perform ray tracing 
from the LiDAR sensor to each of the occupied cell’s center. 
All cells on the route to the occupied cell are set as free. Finally, 
we designated all eight cells around a cell as neighbors unless 
they were already set occupied. We simply set the rewards to 
−𝑅 , 𝑅 , 0, and 𝑅  for state transitions from free, occupied, 
unobserved, and neighbor states, respectively, which gather 
the rewards from the past to enable online learning. Readers 
are recommended to go through [4] for further details and 
experiment results. 

 

 

 

Figure 4. State Determination (left) and State Transition (right). 



  

C.  Multiple Object Tracking 

Building on our previous work [4], we adopt a multi-object 
association and tracking framework based on a modified 
Kalman filter, designed to handle edge cases where the number 
of detected objects varies between consecutive frames. In 
addition to tracking the object centroid, each Kalman filter 
maintains the half-width of the bounding box to preserve size 
information. A "life" parameter is also maintained to manage 
the persistence of tracked objects across frames. 

Following the estimation of the centroids and half widths 
of the dynamic objects in a single frame, we proceed to track 
the motion state of the dynamic objects using Kalman filters. 
The transition matrix 𝐹, observation matrix 𝐻, measurement 
vector 𝑧𝑘, and state vector 𝑥𝑘 can all be expressed as (2-5) 

 𝑥𝑘 = [𝑥𝑐,𝑘 , 𝑦𝑐,𝑘 , 𝑣𝑥,𝑘 , 𝑣𝑦,𝑘]
𝑇 (2) 

 𝑧𝑘 = [𝑥𝑐,𝑘 , 𝑦𝑐,𝑘]
𝑇 (3) 

 𝐹 = [

1 0 𝑑𝑡 0
0 1 0 𝑑𝑡
0 0 1 0
0 0 0 1

] (4) 

 𝐻 = [
1 0 0 0
0 1 0 0

] (5) 

While 𝑣𝑥,𝑘 , 𝑣𝑦,𝑘 represent the traveling speeds in the 𝑥 and 

𝑦 directions in frame k, respectively, 𝑥𝑐,𝑘, 𝑦𝑐,𝑘  represent the 

center coordinates of the bounding box in frame 𝑘 . The 
standard Kalman filter updates its state vector whenever a new 
measurement becomes available.  

In order to solve the problem of different number of objects 
between two consecutive frames, we maintain two obejcts 
arrays: the newly detected dynamic objects Objs with under-
tracking objects TrackingObjs. The basic idea is to associate 
newly detected objects with under-tracking objects in a certain 
distance threshold. The "life" parameter gets reset to full if it 
is associated with a newly detected object; otherwise it will be 
deducted. Details of the algorithm can be found in [4] . 

A common challenge arises when an object becomes 
temporarily static, its "life" value may rapidly decay to zero, 
resulting in premature disappearance and degraded tracking 
performance. To address this problem, we increase the “life” 
value whenever a dynamic object is confirmed by the image-
based detector’s bounding box predictions. For static objects 
not matched with any detections, we bypass the motion 
prediction step but still perform the observation update using 
the last known state. This allows the estimated velocity to 
converge toward zero, preserving tracking continuity and 
accuracy for stationary objects. 

IV. EXPERIMENT FOR LIDAR-CAMERA SENSOR FUSION 

A.  Experiment Environment and Setting 

To evaluate the overall performance of the proposed 
method in dynamic object detection and tracking under real-
world conditions, we designed an indoor bricklaying scenario, 
illustrated in Fig. 5. The experimental environment consisted 
of two sets of ten bricks positioned at both the long and short 
ends of a cross-shaped corridor. Two participants were 
instructed to separately construct brick walls at the end of the 

longer corridor and the shorter corridor, respectively. During 
the task, a quadruped robot (shown in Fig. 6) was guided 
alongside the participant along the longer corridor using an 
autonomous navigation package. 

To obtain ground-truth position data for both the 
participant and the robot, we employed a Vicon motion capture 
system with reflective markers attached to each. The design of 
the environment layout and the human-robot interaction 
protocol draws upon our prior research in this domain [11], 
enabling the robot to experience crossing, passing, merging, 
and group interactions with human in a controlled setting. 

For spatial representation, we utilized a 35×35 occupancy 
grid with a resolution of 0.3 meters per cell. The SLAM system 
was implemented using the LOL-SAM algorithm [12]. A 
LiDAR sensor captured environmental data at 10 Hz with 
1600 samples per scan. The dynamic object detection module 
processed the raw, registered point clouds published at 10 Hz, 
while bounding boxes were generated in real-time using the 
YOLOv8 detector, also at 10 Hz. The total length of the 
recorded message topic streams is 150 seconds. 

B.  Experiment Results 

Fig. 7 presents the distribution of the estimated positions 
of the human participant, alongside the ground truth 
trajectories for both the human and the quadruped robot. Both 
the LiDAR Only and Sensor Fusion configurations 
demonstrate a strong alignment with the ground truth 
trajectories. However, a notable difference is observed at the 
endpoints of both corridors, where the Sensor Fusion approach 
yields a significantly higher density of estimated human 
positions. Specifically, the Sensor Fusion setup produced 
2,061 position estimates—nearly double the 1,038 estimates 
generated by the LiDAR Only configuration. This outcome 
suggests that integrating LiDAR with a fisheye camera 
substantially improves the system’s ability to continuously 
track human workers during periods of temporary inactivity, 
such as while performing bricklaying tasks.  

  

Figure 5. Bricklaying Experiment              Figure 6. Quadruped Robot 

 

Figure 7. Human Detection Distribution. LiDAR Only (left) and Sensor 

Fusion (right).  



  

 

Figure 8. Human Distance Estimation Error. LiDAR Only (left) and Sensor 

Fusion (right).  

To evaluate tracking accuracy, we compared the estimated 
distance between the participant and the robot against ground 
truth data captured by a Vicon motion capture system. Due to 
the Vicon system’s higher sampling rate (approximately 12 
times that of the registered point cloud) and occasional data 
loss, only frames with available ground truth were considered. 
Fig. 8 illustrates the human distance estimation errors for both 
configurations. Given the grid resolution of 0.3 meters used in 
our experimental setup, the average errors were 0.18 meters 
for the LiDAR Only system and 0.3 meters for the Sensor 
Fusion system. The slightly higher error in the Sensor Fusion 
results can be attributed to the increased number of estimates 
near the corridor endpoints. During transitions between 
dynamic and temporarily static states, our method halts 
position updates for static objects, whereas minor movements 
of reflective markers attached to the participant continue to be 
recorded, contributing to small discrepancies. 

V. CONCLUSION 

This study introduces a novel sensor fusion framework for 
real-time dynamic object detection and tracking, leveraging 
the integration of registered LiDAR point cloud maps from 
SLAM with cylindrical panoramic views captured by a fisheye 
camera. Through experiments conducted in a real-world 
indoor construction environment, our approach demonstrates 
strong potential for enhancing robotic perception and 
navigation in complex, human-centric settings. The ability to 
track dynamic objects—even during transitions to temporary 
static states—highlights the effectiveness of our method in 
practical applications. 

Looking ahead, future work will focus on utilizing the 
labeled positions of dynamic objects to support a more 
comprehensive understanding of the surrounding environment, 
ultimately enabling the development of socially aware 
navigation strategies.  

Nonetheless, several challenges remain. The current 
projection of 3D point clouds into 2D space, based on 
occupancy probability changes, is limited when dealing with 
elevation variations or multi-level obstacles, necessitating 
more advanced 3D handling. Additionally, because our current 
approach matches dynamic objects based on proximity to the 
candidate object, incorrect associations between multiple 
object pairs may occur, highlighting the need for a more 
sophisticated matching algorithm to improve pairing accuracy. 
Finally, although the study emphasizes its advancements in 
lowering LiDAR false negatives and image false positives, it 
still lacks a statistical and comprehensive analysis of the effect 
and trade-off of both sensors. 
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