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Abstract— Autonomous navigation in construction environ-
ments is particularly challenging due to dynamic obstacles
and uncertain surroundings. While recent advances in Building
Information Modeling (BIM)-based planning have leveraged
spatial and semantic information to improve navigation, most
prior work assumes precise localization of the BIM model to
enable global path planning. In contrast, this paper introduces
an online replanning framework that registers obstacles on
discovery within BIM and replans according to the updated se-
mantic map. Our method integrates object-aware path planning
by utilizing large language models (LLMs) to extract semantic
danger sentiments from BIM-annotated objects and their spa-
tial information about the mission environment. Additionally,
we demonstrate practical feasibility by integrating a path
tracking control, ensuring generated paths are not only safer
but also realistically executable by mobile robots. Experimental
results demonstrate an improved obstacle avoidance by 2.8×
compared to traditional A* algorithms in dynamically updated
environments.

I. INTRODUCTION

Robotic systems are becoming increasingly important in
the construction industry due to their potential to improve
safety, productivity, and precision [1]. However, the dynamic
and unstructured nature of construction sites poses consid-
erable challenges, particularly for on-site deployment [2].
One of the relevant challenges that must be addressed is
path planning and execution. In construction robotics, path
planning often involves a layered process: modeling the en-
vironment into a grid or graph structure, using global search
algorithms for decision-making, and translating the result
into motion commands [3]. Recent approaches have used
BIM to generate detailed environmental maps for navigation,
enabling A* algorithms to compute efficient paths within
semantically rich building layouts [4]. Other approaches
have combined BIM-based global navigation with local
adjustments to handle dynamic environments [5]. However,
those methods either rely on pre-aligned static BIM maps
or strictly separate global BIM-based waypoints from local
reactive planners, thus not actively updating global paths in
response to newly detected obstacles. Given the dynamic
nature of construction environments, the accurate localization
of moving obstacles can be challenging. Integrating global
and local path planning is essential for autonomous mobile
robots to navigate effectively. Global planners establish an
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initial route using known environmental data, while local
planners adapt to dynamic obstacles in real time and ensure
safe and efficient movement [6].

Previous works by the authors have demonstrated the
feasibility of global path planning using BIM-based semantic
maps combined with object-avoidance heuristics [7], [8].
Such approaches assumed accurate localization of BIM ele-
ments and focused primarily on global planning frameworks.
In contrast, this paper introduces an online replanning frame-
work that registers obstacles on discovery within BIM and re-
plans according to the updated semantic map. By leveraging
the semantic knowledge of existing BIM families and dynam-
ically updating potential heuristics with the Multi-Heuristic
A* (MHA*) algorithm upon discovering previously unseen
obstacles, our approach significantly enhances safety and
context-awareness. Beyond planning, this work incorporates
a practical low-level control strategy (proportional-integral
or PI-based path tracking), thus bridging the gap between
theoretical path generation and feasible robot deployment.
Experimental results in simulated construction environments
demonstrate that our online replanning algorithm maintains
safer paths, quantified by increased minimum distances to
obstacles.

II. PROBLEM FORMULATION

We consider a mobile robot navigating a 2D plane dis-
cretized into a grid of cells. Let

S =
{
(xi, yj)

∣∣ i ∈ {1, . . . , Nx}, j ∈ {1, . . . , Ny}
}

(1)

denote the set of all possible grid points (or nodes) in the
environment. Some of these cells may be fully occupied by
obstacles.

Initially, the robot plans a path assuming a known obstacle
map O0 ⊂ S. The optimal path at time t = 0 is given by:

π∗
0 = arg min

π∈Π(S\O0)
J(π) (2)

where Π(·) denotes the set of feasible paths in the obstacle-
free space, and J(π) is a cost functional that jointly evaluates
both path efficiency (e.g., length, curvature) and safety (e.g.,
distance to nearest obstacle).

As the robot navigates, it actively observes the environ-
ment. Upon detecting new obstacles ∆Ot at time t > 0,
which were previously unknown (i.e., ∆Ot ∩ Ot−1 = ∅), it
updates the obstacle set:

Ot = Ot−1 ∪∆Ot (3)



and resolves the online optimization problem:

π∗
t = arg min

π∈Π(S\Ot)
J(π) (4)

This optimization is resolved using the MHA* method
detailed in the next section.

III. MATHEMATICAL FRAMEWORK

A. Repulsive potential fields

To define the safety cost heuristic, we construct repulsive
potential fields. This builds on the planning framework
introduced in previous studies [7], [8], which provides more
detailed information on the underlying concepts. The fol-
lowing sections summarize the key concepts relevant to this
work. To represent the environment, we utilize BIM, a widely
adopted standard in construction that includes both spatial
geometry and semantic object data. The BIM model serves
as a starting point and is projected onto a 2D grid-based
map suitable for path planning. During this process, object
instances are classified by type, and their geometric extents
are projected onto the 2D plane. Each object is assigned a
risk score, reflecting the hazard the object may pose during
navigation. This score is used to define a repulsive potential
field over the grid. The field value is computed at each grid
point based on its proximity to the object and the associated
danger level. For an object set {M}, the repulsive field at a
grid cell (x, y) is defined as:

frep(x, y,M) =

{
krep · exp (−D(x, y,M)) , D < Dmax

0, otherwise
(5)

Here, D(x, y,M) is the minimum Euclidean distance
from (x, y) to the object’s occupied region M , and krep is the
object’s repulsion coefficient. We set Dmax as the practical
sensing radius (e.g., 2 m). Initially, krep is uniform for all
objects, subsequently scaled by semantic risk scores obtained
via NLP-based assessments. The total repulsive potential at
a point is computed as the sum over all objects:

G(xi, yj) =
∑
k

frep(xi, yj ,Mk) (6)

The result is a dense potential field over the environment,
where high-risk areas create strong repulsive forces that
discourage paths from passing nearby. The total potential
G(xi, yj) serves as a heuristic in the path planning algorithm.

However, prior works often assume reasonable localization
and a static environment where obstacles are known in
advance and do not change over time. In contrast, this
work removes these assumptions and registers obstacles upon
exploration and discovery. Leveraging the labeled object
models available in BIM, we formulate a classification
problem in which newly discovered obstacles, identified
through sensor observations, such as an RGB-D camera,
are assigned accordingly. This information is then used to
dynamically update the environment representation and re-
solve the path planning problem, minimizing the revised

optimization objective in response to the newly perceived
surroundings.

B. Risk modulation with NLP given BIM family labels

Given the semantic label of a BIM family, we infer
the appropriate level of avoidance a robot should exhibit.
We use GPT-3.5 with structured prompts describing object
characteristics (e.g., financial value, dynamism, hazard type)
to output a normalized danger coefficient (0–1). For instance,
a forklift might receive a danger coefficient of 0.9 versus 0.3
for a stationary beam. These coefficients directly modulate
each object’s repulsive coefficient through α ∗krep, where α
is the scaling factor derived from the LLM to reflect implicit
semantic risk and thereby adjusts the planner’s behavior [8].

C. Multi-Heuristic A* path planning

We use a graph-based path planning method to compute a
safe and efficient trajectory. Each node within the graph has
an associated distance-to-goal cost and potential field. We
adopt the MHA* algorithm, an extension of the classical A*
that enables the simultaneous use of multiple heuristics. In
standard A*, the cost of reaching a node n is given by:

f(n) = g(n) + h(n) (7)

With f(n) as the total cost of each node, g(n) denotes
the cost of the start node to the current node, and h(n)
is the heuristic of the current node [8]. Using Euclidean
distance alone can lead to overly conservative paths or unsafe
shortcuts. MHA* effectively balances navigation by handling
multiple heuristics, such as safety heuristics, to ensure safe
and reasonably efficient paths. To guarantee optimality, h(n)
must be admissible, meaning it never overestimates the true
cost. MHA* generalizes this formulation by allowing multi-
ple heuristics to guide the search, where only one (called the
anchor) must be admissible. In our case, we define: (1) an
admissible heuristic based on Euclidean distance to the goal,
(2) a safety heuristic based on the repulsive potential field
G(x, y). Original formulation and analysis of MHA* can be
found in [9].

D. Path Following for Wheeled Mobile Robots

Path-following in mobile robotics is a well-studied prob-
lem, with solutions ranging from basic control laws to
sophisticated nonlinear and model-based strategies [10], [11].
To follow a planned path generated by MHA*, we adopt
a low-level control strategy suitable for differential-drive
robots. This skid steer UGV can be modeled as a unicycle
[12]. The kinematic model is given by (8) and it includes the
configuration p = [x, y, θ]⊤ and control input u = [v, ω]⊤.ẋẏ

θ̇

 =

cos θ 0
sin θ 0
0 1

[
v
ω

]
(8)

The high-level planner provides a discrete sequence of
waypoints P = {p1, . . . ,pN}, which are interpolated using
splines to ensure smooth tracking. Given the robot’s current
position p = [x, y, θ]⊤ we find the closest path target:



iclosest = argmin
i

∥p − pi∥. The control target is selected

by a fixed-step lookahead rule: itarget = iclosest + δ. The
error state is denoted as e = [ex, ey, eθ]

⊤. Path following
is performed in the robot’s local frame using a feedforward
velocity vFF plus proportional-integral (PI) feedback control
command for the forward velocity in (9) and a PI control law
to compute the angular velocity command as in (10) [13].

v = vFF + kP,vev + kI,v

∫
ev dt (9)

ω = kP,weθ + kI,w

∫
eθ dt (10)

The controller’s proportional gains kP,v, kP,w and integral
gains kI,v kI,w are tuned to achieve desired behavior. This
control law is simple to implement, effective for smooth
trajectories and suitable for simulation or deployment on
skid-steered platforms. The velocity commands [v, ω]⊤ can
be mapped directly to wheel velocities [vleft, vright]

⊤ using
a one-to-one relationship.

IV. METHODOLOGY

The proposed framework imports a BIM file into the
Unity game engine simulation environment. Object metadata
is extracted and structured as a JavaScript Object Notation
(JSON) file, which is provided as input to an LLM. Based on
semantic interpretation and prompt context, the LLM assigns
risk-based coefficients to each object, forming a repulsive
potential field. This field serves as a heuristic in the multi-
heuristic A* (MHA*) planner for global path generation.

Obstacle detection is performed in simulation using
Unity’s Raycast module, which enables real-time sensing by
projecting rays from a virtual sensor toward objects in the
environment. In simulation, detected objects via Unity’s Ray-
cast are directly matched to their known BIM identifiers. In
real-world deployments, a visual recognition module would
be necessary, which we currently assume as adequate. An
object is classified as an obstacle if it falls within a 60°
field of view relative to the sensor’s forward direction. Upon
detection, online replanning is triggered using the MHA*
algorithm to update the planned path. For local control, a
PI controller tracks the planned path by converting position
errors into velocity commands for a unicycle-model robot.
The overall system pipeline is illustrated in Figure 1. The
final minimum distances to each detected obstacle is recorded
as a safety performance metric. The controller gains listed
in Table (I) were tuned through simulation trials to result in
a desired behavior.

Fig. 1. Overview of the proposed planning and control framework

TABLE I
CONTROL PARAMETERS

vlimit wlimit vFF kP,v kI,v kP,w kI,w
0.15 m/s 0.75 m/s 0.1 m/s 0.2 0.01 1.5 0.01

V. EXPERIMENTS AND VALIDATION

The BIM file is converted from a Revit file into an FBX
file and loaded into the simulator as shown in Figure 2,
along with the initial planned path without prior knowledge
of obstacle positions. Obstacles are only detected when they
enter the FOV of the robot and are then used for updating the
path. Figure 3 shows the following replanning sequence. As
the robot navigates, newly detected obstacles trigger local
turns and global replanning, resulting in a safer path that
avoids high-risk regions. A video demonstration of the path-
following behavior is available: Pathfinding Mobile Robot

Fig. 2. Simulation environment of a construction site modeled in Unity,
with BIM data imported from a Revit file. It shows the robot (yellow),
obstacles (red), path (pink) and target (green)

Fig. 3. Updated path based on the detection of obstacles: (a) Sequence 1,
(b) sequence 2, (c) sequence 3, (d) sequence 4. With the detection of new
obstacles, the robot adjusts the plan online, resulting in a longer but safer
path.

For baseline comparison, we evaluated standard A* path
planning without obstacle detection. As it relies solely on
distance-based planning, it does not actively seek safer
paths around newly detected obstacles. Table II reports the
minimum distance to unseen obstacles, which are the BIM
families that we find during navigation. The baseline A*

https://youtu.be/6F2_p_sE9YU


closely passes obstacles (min clearance 0.26 m), while our
method proactively maintains safer clearances ( 0.74 m) by
dynamically adjusting paths earlier. Although this results
in longer paths, it significantly enhances safety—a critical
trade-off in dynamic construction settings. In other words,
our planning framework achieves a 2.8x improvement in
object avoidance compared to baseline A*. In addition, Table
III presents the root-mean-square error (RMSE) in forward,
lateral, and angular tracking, confirming the effectiveness of
the low-level controller in following the planned path.

TABLE II
TABLE II: OBSTACLE AVOIDANCE METRICS COMPUTED BASED ON 4

DETECTED BIM OBSTACLES

Method Min. Distance (m) Path length (m)
Standard A* 0.26 5.74
BIM-based MHA* 0.74 9.58

TABLE III
RMSE METRIC FOR FORWARD xe , LATERAL ye , AND ANGULAR θe

ERROR

RMSE xe RMSE ye RMSE θe
0.0886 (m) 0.1181 (m) 25.19 (deg)

The experimental results confirm that the proposed frame-
work generates a safe, dynamically adaptive path in a
simulated construction environment using partial visibility
guidance. As the robot progressively detects previously un-
seen obstacles, the planner successfully updates the path
to avoid hazards, demonstrating the benefits of online re-
planning with real-time sensing. The minimum distance to
obstacles demonstrates that safety is maintained throughout
the navigation process despite the increase in path length.
This trade-off is consistent with the intended design of the
MHA* planner, which prioritizes risk avoidance over shortest
path optimization.

VI. CONCLUSION

This work presents an online replanning framework for
mobile robots operating in BIM-enabled environments. By
exploiting semantic object data from BIM, contextual risk
assessment through LLMs, and multi-heuristic A* planning,
the proposed system effectively generates safe and adap-
tive navigation paths. Simulation results demonstrate the
framework’s ability to adjust paths in response to newly
observed obstacles, while maintaining safe distances and
tracking accuracy through a PI-based controller.

The current validation relies exclusively on Unity simu-
lation using simplified perception (Raycast sensors). While
this enables controlled evaluations, real-world scenarios in-
volve complexities such as sensor noise, varying lighting
conditions, and partial occlusions. Prior research [14] has
demonstrated accurate semantic segmentation in cluttered
construction scenes, suggesting real-world feasibility. How-
ever, future practical deployment requires robust perception

modules and SLAM-based localization to handle realistic
uncertainties. These critical aspects form our future research
directions. Also, future research will incorporate realistic
semantic perception and SLAM techniques to address current
assumptions of perfect perception and localization. Addition-
ally, precomputing or caching LLM-derived risk assessments
is proposed to facilitate real-time, real-world deployments.
Dynamic obstacle avoidance will be addressed through the
integration of appropriate control strategies, such as control
barrier functions (CBFs).
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