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Abstract— This research presents a multimodal framework
for locomotion prediction to enhance high-level exoskeleton
control in dynamic construction settings by integrating speech
commands and visual data from smart glasses. The study
comprises two stages: the first stage evaluates the zero-shot gen-
eralization of GPT-40 against fine-tuned CLIP and ImageBind
models, achieving weighted F1-scores of 88%, 90%, and 79 %,
respectively; and the second stage introduces a large language
model-based agent with short-term and long-term memory sys-
tems to improve context awareness and robustness to command
ambiguity. Tested under stringent conditions with challenging,
ambiguous, and high-risk scenarios, the agent attains a 90%
F1-score compared to a 73% no-memory baseline.

I. INTRODUCTION

The construction industry confronts significant challenges,
including labor shortages, intense physical demands, and
heightened safety risks, with work-related musculoskeletal
disorders a common issue [1], [2]. Exoskeletons, wearable
devices designed to augment, assist, or enhance physical
activity, provide a promising solution to alleviate these
problems [1]. Yet, their effectiveness depends on sophisti-
cated control systems capable of accurately interpreting user
intent across diverse locomotion activities in unpredictable
environments, a cornerstone of seamless human-exoskeleton
collaboration [3], [4]. Traditional approaches often rely on
supervised learning methods, and their integration into indus-
trial applications warrants further exploration [5]. While prior
research has focused on routine gait tasks [6], construction
tasks such as ladder climbing and obstacle navigation require
adaptation to dynamic conditions.

Recent advances in artificial intelligence, particularly
Large Language Models (LLMs), offer a transformative
opportunity to overcome these limitations, demonstrating
significant progress in multimodal understanding [7], [8].
Pre-trained on extensive datasets, LLMs support few-shot
and zero-shot generalization, enabling flexible adaptation to
varied tasks without requiring extensive retraining [9], [10],
[11]. Building on these strengths, LLM-based agents excel in
natural language interaction, environmental comprehension,
reasoning, planning, and tool usage, performing complex
tasks with remarkable efficacy while leveraging memory
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systems to store and retrieve contextual information for
consistent performance [12], [13].

This study develops a multimodal framework that inte-
grates speech commands and visual data from smart glasses
to enable adaptive exoskeleton control. The research is
structured in two stages. The first stage investigates the
generalization capabilities of zero-shot learning with GPT-
40, comparing its performance to fine-tuned CLIP and Im-
ageBind models. The second stage introduces a LLM-based
agent augmented with short-term and long-term memory
systems to address limitations, particularly regarding context
awareness and command ambiguity. By employing diverse
commands with increased vagueness and safety-criticality,
this stage tests the agent’s robustness under demanding
conditions. Through these efforts, the study aims to advance
human-exoskeleton collaboration, contributing to safer and
more efficient construction workflows.

II. METHODOLOGY

The methodology outlines the approaches for both stages,
detailing model configurations and agent architecture for
locomotion prediction using speech commands and visual
data.

A. Stage 1: Multimodal Locomotion Prediction

The first stage developed a framework to predict loco-
motion modes by combining speech commands and field-
of-view (FOV) visual data, evaluating GPT-40’s zero-shot
performance against fine-tuned CLIP and ImageBind models.

1) CLIP and ImageBind Supervised Fine-Tuning: The
CLIP model [14], implemented as the clip-vit-large-patch14-
336 variant, and the ImageBind model [15], configured as
the imagebind_huge variant, were fine-tuned for locomotion
prediction. Both models processed images through a vision
transformer to generate high-dimensional embeddings and
used a transformer-based text encoder for command em-
beddings. The embeddings from each modality were con-
catenated to form a unified representation, processed by a
classification head to predict locomotion modes. The fine-
tuning utilized cross-entropy loss and the Adam optimizer,
with the resulting model mapping the fused representation
to locomotion labels.

2) GPT-40 Zero-Shot Learning: GPT-40 [16], particu-
larly using gpt-40-2024-05-13, operated without task-specific
training, employing Chain-of-Thought (CoT) prompting [17]
to facilitate detailed reasoning. The prompt guided the model
to analyze FOV sequences for movement patterns, interpret
commands for intent, and provide a reasoning trace culmi-
nating in a locomotion mode prediction.



B. Stage 2: LLM-Based Agent with Memory Integration

The second stage introduced an agent to overcome Stage
I’s limitations, particularly in ambiguous and safety-critical
command processing, designed for rapid task transitions and
robust performance. The agent integrates a LLM with a struc-
tured workflow comprising the Perception Module, Mem-
ory Modules, and Refinement Module to enhance context-
awareness and safety (Figure 1).
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Fig. 1: Overview of the LLM-based agent architecture; the
gated arrow denotes clarity-filtered storage to long-term
memory

1) Perception Module: The Perception Module serves
as the initial processing unit, interpreting multimodal in-
puts—spoken commands and FOV frames captured over
a defined period—to generate an initial locomotion mode
prediction. It processes the inputs using GPT-4o0 (gpt-4o-
2024-05-13), integrating context from short-term memory
structured as recent locomotion modes, environments, and
primary objects users interact with, which informs safety and
consistency checks, such as preventing unsafe transitions like
“sitting” atop a ladder by prioritizing visual evidence over
conflicting commands. The module employs a highly struc-
tured prompt, expanding upon Stage 1’s general approach,
to guide frame-by-frame analysis for movement direction,
command interpretation with ambiguity checks, discrepancy
quantification between visual and linguistic inputs, and safety
analysis of transitions based on short-term memory. The
output is a JSON response, including the predicted loco-
motion mode, a detailed CoT reasoning trace, clarity scores
for vagueness, discrepancy, and confidence, environmental or
scene context (e.g., indoor or outdoor settings), and identified
objects or obstacles, providing a foundation for subsequent
processing.

2) Memory Modules: Short-term memory functions as a
transient buffer, retaining a dynamic record of recent events,
including prior locomotion modes, environmental context,
and objects or obstacles users interact with, within a defined
temporal window. It is continuously updated with each per-
ception output and employs a pruning mechanism to remove
outdated entries, ensuring relevance for immediate context
needs, such as validating a ladder descent following an as-
cent. Long-term memory operates as a persistent repository,
storing all locomotion events as vector embeddings within
a ChromaDB database, with text and image embeddings
generated using text-embedding-ada-002 and clip-vit-large-
patch14, respectively. Retrieval employs a multivector sim-
ilarity search, calculating cosine similarity between current
and stored embeddings, with weights adjusted based on dis-
crepancy score: text similarity is weighted by 1—discrepancy,

and image similarity by discrepancy, prioritizing visual or
textual cues accordingly, selecting the top-K most relevant
events. Events are categorized as safety-critical or routine,
with retrieval guided by a composite score:

(ws - similarity) + (w; - importance) + (w, - confidence)—

(wq - discrepancy + w,, - vagueness),

(D

where a penalty for vagueness and discrepancy is applied,
reduced for safety-critical events to ensure that events critical
to safety, with lower vagueness and discrepancy, are ranked
higher. Each event’s importance score decays exponentially
over time, with safety-critical events decaying more slowly
to preserve their significance, while routine events fade
more quickly, and pruning is performed to maintain memory
efficiency by removing less significant entries over time; fre-
quent retrieval of an event boosts its importance, enhancing
its retention.

3) Refinement Module: The Refinement Module enhances
decision-making by re-evaluating ambiguous inputs, activat-
ing when the Perception Module’s clarity score—computed
as:

wy, - (1 —vagueness) +w, - (1 —discrepancy ) +w, - confidence,

2)
falls below a dynamic threshold escalating over evaluation
cycles. It reprocesses inputs with enriched context from
short-term memory and long-term memory, using a struc-
tured prompt that extends the original Perception Module
prompt with insights derived from long-term memory, in-
cluding the retrieved locomotion mode and a summary of
command and visual details, to generate a refined response
with an updated prediction, revised scores, and a reasoning
trace, ensuring accuracy and safety in ambiguous or high-risk
scenarios.

III. EVALUATION

The evaluation was conducted in an environment (Fig-
ure 2) designed to emulate several construction activities,
utilizing Tobii Pro Glasses 2 to capture speech commands
and FOV frames. All commands were transcribed using
OpenAI’s Whisper (medium size) [18]. The dataset encom-
passed twelve locomotion modes: construction ladder up
climbing, construction ladder down climbing, vertical ladder
up climbing, vertical ladder down climbing, level-ground
navigation, low-space navigation, sitting down, standing up,
stair ascension, stair descension, stepping over a box, and
stepping over a pipe. In Stage 1, the dataset employed
a 5-second FOV window, capturing 2 seconds before and
3 seconds after command onset, structured into 3x3 grid
images, with 248 samples for training and 111 samples
for testing. In Stage 2, the dataset comprised 226 sam-
ples and utilized a shorter 1.5-second FOV window (0.25
seconds before and 1.25 seconds after command onset)
to minimize overlap during faster continuous transitions,
while maintaining the 3x3 grid structure. To rigorously
test robustness, Stage 2 includes three command types:



clear commands, such as “I'm walking” for level-ground
navigation, which provided unambiguous instructions; vague
commands, such as “I’'m heading up” for stair ascension,
which introduced interpretive challenges; and safety-critical
commands, such as “I’m walking forward” when positioned
atop a construction ladder, which posed significant risks if
misinterpreted as level-ground navigation rather than ladder
descent. These commands targeted high-risk tasks, including
ladder climbing, obstacle navigation, low-space movement,
and stair descension. The test data included 164 clear, 44
vague, and 18 safety-critical commands.

A. Stage 1 Performance

The evaluation of Stage 1 focused on weighted precision,
recall, and Fl-scores, assessing the effectiveness of multi-
modal inputs across the three models, as summarized in Table
I. The fine-tuned CLIP model achieved the highest weighted
Fl-score of 90%, with a precision of 91% and a recall of
90%, reflecting robust performance due to its task-specific
optimization and effective integration of visual and linguistic
embeddings. The fine-tuned ImageBind model recorded a
weighted Fl-score of 79%, with a precision of 81% and
a recall of 78%, indicating moderate performance but lower
effectiveness compared to CLIP. GPT-40, evaluated in a zero-
shot setting, achieved a weighted Fl-score of 88%, with a
precision of 89% and a recall of 88%, demonstrating strong
generalization without training, closely rivaling CLIP’s per-
formance.

TABLE I: Stage 1 Performance Metrics (Weighted Average)

Model Precision | Recall | F1-Score
CLIP Fine-Tuned 91% 90% 90%
ImageBind Fine-Tuned 81% 78% 79%
GPT-40 Zero-Shot 89% 88% 88%

These results highlight GPT-40’s competitive performance
compared to supervised fine-tuning, underscoring the po-
tential of multimodal LLMs for zero-shot learning from
users’ vision and speech in complex and diverse locomotion
prediction scenarios typical of construction environments.
However, its effectiveness was constrained by difficulties in
resolving ambiguous commands and the lack of temporal
context, which impacted overall robustness at this stage.
These limitations underscore the need for further investi-
gation into adaptive and context-aware LLM agents, which
were explored in Stage 2.

B. Stage 2 Performance

Stage 2’s evaluation was significantly more demanding,
designed to test the agent’s robustness under conditions
that more closely mimicked the complexities of real-world
construction environments. The 1.5-second FOV window
challenged the agent to interpret rapid task transitions, while
the inclusion of clear, vague, and safety-critical commands
introduced varying levels of ambiguity and risk. Performance
was assessed using weighted precision, recall, and F1-scores,

supplemented by Brier Score and Expected Calibration Error
(ECE) to evaluate prediction reliability.

Ablation studies compared three configurations: a no-
memory baseline relying solely on the Perception Module
without memory, a short-term memory-only setup, and the
full system integrating both short-term and long-term mem-
ory, as summarized in Table II. The no-memory baseline
achieved a weighted Fl-score of 73%, with a precision of
81% and a recall of 70%, reflecting limitations in processing
ambiguous or discrepant inputs without contextual support.
The short-term memory-only configuration improved the F1-
score to 81%, with a precision of 86% and a recall of
81%, as recent events facilitated smoother transitions. The
full system, incorporating both memory types, attained a
weighted Fl-score of 90%, with a precision of 92% and
a recall of 90%, demonstrating the synergistic effect of
immediate and historical context in enhancing prediction
accuracy.

TABLE II: Stage 2 Ablation Metrics (Weighted Average)

Configuration Precision | Recall | F1-Score
No Memory 81% 70% 73%
Short-Term Memory Only 86% 81% 81%
Full Memory 92% 90% 90%

Calibration metrics, presented in Table III, further under-
scored the agent’s reliability. The Brier Score decreased from
0.244 in the no-memory condition to 0.169 with short-term
memory only, and further to 0.090 with full memory inte-
gration, indicating improved prediction calibration. Similarly,
the Expected Calibration Error dropped from 0.222 to 0.133
and then to 0.044, reflecting a robust alignment between
prediction confidence and actual outcomes.

TABLE III: Stage 2 Calibration Metrics

Configuration Brier Score | ECE
No Memory 0.244 0.222
Short-Term Memory Only 0.169 0.133
Full Memory 0.090 0.044

Performance across command types, as illustrated in Fig.
3, provided insights into the differential impact of mem-
ory systems under Stage 2’s varied conditions. For clear
commands, the full system achieved an Fl-score of 94%,
approaching perfect accuracy due to their unambiguous
nature. Vague commands saw a substantial improvement
from 69% in the no-memory condition to 83% with short-
term memory and 86% with the full memory system, high-
lighting short-term memory’s effectiveness in resolving most
ambiguities by leveraging recent activity context. Safety-
critical commands improved from 38% to 72%, indicating
substantial progress with the full memory system, though
the task remains inherently challenging.

IV. CONCLUSION

This study presents a multimodal framework that signifi-
cantly advances high-level exoskeleton control through pre-
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Fig. 2: Environment Setting
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Fig. 3: Weighted F1-Score Across Command Types for LLM Agent

cise locomotion prediction in construction environments. The
first stage validated the potential of zero-shot learning with
GPT-40, achieving performance comparable to fine-tuned
CLIP. The second stage introduced a memory-augmented
large language model-based agent, attaining a weighted F1-
score of 90% and robust calibration under rigorous condi-
tions such as complex command scenarios encompassing
clear, vague, and safety-critical instructions. Future research
should enhance the Perception Module’s clarity scoring for
high-discrepancy cases, refine intent recognition with user
feedback, explore retrieval strategies using knowledge graphs
or scene graphs, and conduct real-time evaluations in live
construction settings to ensure robustness. These advance-
ments will strengthen the framework’s applicability for safe
and efficient human-exoskeleton collaboration in dynamic
construction workflows.
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